KGP5000 シリーズ スマートバルブポジショナ

Model KGP5000 / 5003

目次

1.	導	ኢ	6
	1.1.	本取扱説明書の適用範囲	6
	1.2.	安全上の注意事項	7
	1.3.	本器の概要	7
	1.3	.1. 本器の各部名称	8
	1.3	.2. 動作原理	8
	1.4.	仕様	
	1.5.	マーキング	11
	1.6.	認証	
	1.7.	ツール	
	1.8.	保管	14
	1.9.	保証	14
2.	設記	置	15
	2.1.	取り付け姿勢と位置	15
	2.2.	直線運動形駆動部への取り付け(5200LA, 6300LA, 5300LA)	16
	2.3.	回転運動形駆動部への取り付け(6300RC)	17
	2.4.	回転運動形駆動部への取り付け(VDI/VDE3845)	
	2.5.	空気接続	
	2.5	.1. 供給空気圧の接続	
	2.5	.2. 出力空気圧の接続	
	2.6.	電気接続	
	2.7.	固定絞りプレート(オプション):小型駆動部におけるハンチング抑制用パーツ	24
	2.7	.1. 固定絞りプレートの適用の目安	24
	2.7	.2. 固定絞りプレートの取り付け	24
3.	防火	暴形について	25
	3.1.	TIIS 耐圧防爆形	
	3.2.	CCC(NEPSI)耐圧防爆形	27
	3.3.	KOSHA 耐圧防爆形	
	3.4.	IECEx 耐圧防爆形	
	3.5.	ATEX 耐圧防爆形	
	3.6.	EAC 耐圧防爆形	
	3.7.	CNS 耐圧防爆形	
4.	設定	定とインフォメーション	33
	4.1.	ローカルユーザーインターフェース(LUI)	
	4.1	.1. フロントカバーの取り付け・取り外し	
	4.1	.2. 操作ボタン	

	4.1.3.	LCD の構成	34
	4.1.4.	LCD のメニューツリー	
	4.2.	安定作業フロー	40
	4.3. 基	基本設定	41
	4.3.1.	ポジショナで制御を行うために必要な基本設定	41
	4.3.2.	駆動部の動作設定パターン一覧	42
	4.4. 龍	簡易チューニング	50
	4.4.1.	フルオートチューン	50
	4.4.2.	ポジションセットアップ	50
	4.4.3.	レスポンスチューニング	51
	4.4.4.	固定絞り取り付け時の設定手順	51
	4.5.]	ニキスパートチューニング	53
	4.5.1.	PID パラメータのプリセット設定	53
	4.5.2.	PID パラメータのカスタム設定	54
	4.5.3.	IP シグナルバイアスの設定	58
	4.6.]	ニラーメッセージ	58
	4.7.	羊細設定	59
	4.8. 쉼	各機能の設定	61
	4.9. >	モリ操作	63
	4.9.1.	メモリ保存	63
	4.9.2.	設定データの復元	64
	4.9.3.	工場出荷データに初期化	64
	4.10. 1	インフォメーション	64
	4.10.3	1. ステータス状況の表示	64
	4.10.2	2. 運転状況の表示	64
	4.10.3	3. 本器内部情報の表示	65
	4.10.4	4. 設定情報の表示	65
	4.11. มั	重転前の確認	66
5.	メンテ	・ ナンス	67
	5.1. 悥	周整・切り替え	67
	5.1.1.	オート・マニュアルモード切り替え	67
	5.1.2.	トルクモータの調整	68
	5.1.3.	パイロットリレー動作の切り替え	69
	5.1.4.	パイロットリレーのバランス圧調整	69
	5.2. =	テャリブレーション	70
	5.2.1.	設定値の保存	70
	5.2.2.	入力信号のキャリブレーション	70
	5.2.3.	クロスポイントのキャリブレーション	71

	5.2.4.	開度発信信号のキャリブレーション	72
	5.2.5.	圧力センサのキャリブレーション	73
	5.2.6.	ポテンショメータのキャリブレーション	75
	5.3. シミ	ュレーションテスト	76
	5.3.1.	入力信号シミュレーション	76
	5.3.2.	IP シグナルシミュレーション	77
	5.3.3.	開度発信信号シミュレーション	78
	5.3.4.	ランプ応答シミュレーション	
	5.3.5.	ステップ応答シミュレーション	79
	5.4. ユニ	ットの清掃・交換	
	5.4.1.	固定絞りの清掃	
	5.4.2.	金網フィルタの清掃	
	5.4.3.	ノズルフラッパの清掃	82
	5.4.4.	パイロットリレー絞りの清掃	83
	5.5. サー	-ビスメニュー	84
	5.5.1.	内部変数の確認	84
	5.5.2.	工場出荷メニューの切り替え	
	5.5.3.	クロスポイントの調整	
	5.5.4.	Factory Setup	85
	5.5.4.1.	Factory Setup の概要	
	5.5.4.2.	Factory Setup の表示	
6.	アラーム	A	86
	6.1. アラ	ームの概要	87
	6.2. アラ	ームの設定 / 結果の確認・解除	
	6.2.1.	開度アラーム	89
	6.2.2.	偏差アラーム	91
	6.2.3.	温度アラーム	92
	6.2.4.	高供給圧アラーム	93
	6.2.5.	低供給圧アラーム	94
	6.2.6.	圧力センサ故障アラーム	95
	6.2.7.	アラームの解除	96
	6.3. NAM	MUR 表示の割り当て	97
7.	診断		98
	7.1. オン	ヮライン診断	98
	7.1.1.	オンライン診断の概要	98
	7.1.2.	オンライン診断の設定 / 結果の確認とクリア	100
	7.1.3.	診断ログのクリア	111
	7.2. オフ	ライン診断	112

	7.2.	.1. オフライン診断の概要	112
	7.2.	2. 25%ステップ応答	114
	7.2.	3. 空気回路スパン	115
	7.2.	2.4. 空気回路ドリフト	117
	7.2.	5. 簡易バルブシグネチャ	
	7.2.	6. オフライン診断結果の確認および保存	120
8.	HAI	RT 通信	
	8.1.	HART 通信のための準備	
	8.2.	HART 通信による操作	
	8.3.	デバイスの確認	
9.	トラ	ラブルシューティング	
10.	部品		
	10.1.	部品図とリスト	
	10.2.	点検周期·交換周期	125
	10.3.	製品または部品の廃棄	125
	10.4.	保守部品の手配・お問い合わせ	
11.	外刑	形寸法図	
A)	付釒	録. 形式およびコード番号	130
B)	付釒	禄. テクニカルサポート記入票	

1. 導入

まず始めにお読みください!

この取扱説明書は, KGP5000 シリーズ・スマートバルブポジショナ(以下,本器)に関するものであり, 製品仕様,設置・設定作業,メンテナンス手順,アラームや診断機能の使い方,トラブルシューティン グ,交換部品などの詳細について記載してあります.ご使用になる前に必ずお読みください.

さらなるサポートが必要な場合には、ご遠慮なくお問い合わせください. 連絡先は本書の最終ページに記載してあります.

この取扱説明書は大切に保管してください!

この取扱説明書について;

- > 本書は、最終ユーザーのお手元まで確実に届くようにご配慮ください
- > 本書の内容は、製品改良のために予告なく変更することがあります
- > 本書の内容の一部または全部を無断で複製・転載することは禁止します。
- 本書は、本器の使用上、特に問題がないと判断される構造・仕様変更の場合には改訂されないこと があります
- 本書の内容は十分な注意を払って記載されておりますが、万が一、不審な箇所や誤りなどがございましたら、弊社営業所までご連絡ください

1.1. 本取扱説明書の適用範囲

本ドキュメントは、下記に適用されます.

Electronics Version	:	1.0.0 以上	
Software Version	:	1.0.0 以上	
Model			
KGP5003	:	HART 通信付,	開度発信付
KGP5000	:	HART 通信無,	開度発信無
HART EDD/FDI			
EDD Version	:	3 以上	
FDI Version	:	03.00.00 以上	

1.2. 安全上の注意事項

本ドキュメントにおいては、守られるべき安全に関する「注意事項」を文中に下記のような警告・注意マークとと もに説明しております.この取扱説明書に記載されている安全に関する注意事項をよくお読みになり、十分に 理解されてから、本器に関する作業を行ってください.

注意事項を守らないと、死亡または重傷を負うなど重度な人身事故につながる恐れが高い事柄

▲ 注意

注意事項を守らないと, 軽傷または中程度の障害を負うなどの人身事故, もしくは本器および本器 を使用するシステムの破損・故障につながる恐れが高い事柄

なお,この取扱説明書に記載されている事項は、本スマートバルブポジショナのみに関するものとなりますので、 それ以外の使用方法または操作方法をされる場合に必要な安全に対する配慮は、すべて使用者の責任にお いて実施して下さい.

1.3. 本器の概要

KGP5000 シリーズ・スマートバルブポジショナは、空気圧により作動する調節弁に取り付け、上位制御システムや調節計からの 4-20mA 信号を受けて、調節弁を所望の弁開度にコントロールするための制御機器です.調節弁の弁開度を検出し、入力信号との比較を行いながらフィードバック制御を行うため、調節弁の正確な位置決めが可能です.

また,本器は,直線運動形駆動部および回転運動形駆動部の単動形駆動部,複動形駆動部など, 様々なタイプの駆動部に取り付けて使用することができます.

さらに、本器は、デジタル式の特長を活かし、高度な PID 制御機能、LCD を用いたローカルユーザーインターフ エース(LUI)機能や、角度センサや圧力センサ等のセンシング技術を有効利用した診断機能を備えています ので、設置・設定作業における省力化はもちろんのこと、運転・メンテナンス作業において、効果的な状態監 視や効率的な作業を行うことができます.

1.3.1. 本器の各部名称

図 1.3.1 本器の構成

1.3.2. 動作原理

ブロック構成ならびに入出力処理フローを,図 1.3.2a, 1.3.2b に示します.

4-20mA 信号,フィードバックレバーを介したポテンショメータからの開度信号ならびに圧力センサ(Ps, Pout1, Pout2)からの圧力信号を A/D 変換し, CPU(中央演算処理装置)で読み取り,入力信号と開度信号との差を, CPU 内部の制御アルゴリズムにより検出し,制御偏差とします.

この制御偏差を小さくするための新しい制御信号を CPU 内部での制御演算により生成し, IP シグナル電流とし てトルクモータのコイルに流します.

変更された IP シグナル電流によりノズルフラッパが動き新たなノズル背圧が生成され,パイロットリレーに送られる 新たな圧力により出力圧が変化し,制御偏差が小さくなる方向に駆動部が動作します.

以上の動作を繰り返すことにより、入力信号に応じた弁開度になるように制御を行います.

^{※1, ※2} Model KGP5003 のみ

1.4. 仕様

<u>一般;</u>

対象駆動部;

 KOSO ダイアフラム式直線運動形:5200LA

 KOSO シリンダ式直線運動形:6300LA

 KOSO 倍圧式直線運動形:5300LA

 KOSO 回転運動形:6300RC

 IEC60534-6, VDI/VDE3845 準拠の駆動部

 トラベルレンジ;

 ストローク:12~250 mm

 ※それ以外は特殊設計で相談可

 回転角:40~100°

 駆動部動作;単動形 / 複動形

<u>環境;</u>

周囲温度範囲;非防爆形:-40~80℃ 防爆形:3章参照のこと LCD 表示: -20~70℃ 周囲湿度範囲;5~95%RH(結露なし)

電気 ;

入力信号;
 ポジショナ制御
 標準電流範囲:4-20mADC
 スプリットレンジ設定可能
 CPU 起動/HART 通信
 最小電流:3.8mADC
 最大許容電流:24mADC
 印加電圧@20mA
 Model KGP5000:8.6VDC(入力抵抗 430Ω)
 Model KGP5003:9.6VDC(入力抵抗 480Ω)
 逆接続保護;-40VDC
 開度発信出力; ※Model KGP5003 のみ
 供給電源:17-31VDC
 信号レンジ:4-20mADC
 開度信号:3.8mA <-+<20.5mA

アラーム:≦3.6mA もしくは≧21mA *NAMUR NE43 準拠 バーンアウト方向 アラーム時 : ソフトウェア設定 入力信号ダウン時 : Lo 側

最大電圧:40VDC 逆接続保護;-40VDC

空気 ;

供給空気圧; 最小:140kPa, 最大:800kPa 媒体:空気 空気の質: JIS B 8392(2012) / ISO8573-1(2010), 固形粒子:等級5(2~5µフィルタ推奨) 油分:等級3(1ppm 未満) 湿度:露点温度が機器本体温度より少 なくとも 10℃低いものとする 出力空気圧; 動作:複動形または単動形 ※単動形パイロットリレーは正動作のみ 空気消費量; 単動形 : 6NL/min 以下(@140kPa) :9NL/min 以下(@300kPa) ※出力 50%定常時 複動形 : 16NL/min 以下 (@400kPa) : 20NL/min 以下(@550kPa) ※バランス圧 70%Ps 時 最大空気処理容量; 165NL/min 以上 (@140kPa) 290NL/min 以上(@300kPa) 370NL/min 以上(@400kPa) 500NL/min 以上(@550kPa)

<u>構造;</u>

本体材質;アルミダイカスト合金,アクリル焼付塗装 ゴム材質; 計装空気部 シリコーンゴム その他 NBR 保護等級;IP66 TIIS, CCC(NEPSI), KOSHA: TÜV Rheinland 認証番号 AK 50363732 0001 IECEx, ATEX, EAC, CNS: TÜV Rheinland 認証番号 AK 50448750 0001 空気接続口;Rc1/4 または 1/4NPT 電気接続口;仕様に応じて下記 G1/2, 1/2NPT, M20x1.5

本体取り付けねじ;4xM8, Φ50-4xM6 本体重量;3.0kg(圧力計ブロックを除く)

外形寸法	; W218x H14	9 x l	D133
<u>性能;</u>			
開度制御			
直線	生	; =	±1.2%
ヒステ	リシス	;	0.7%
開度発信 直線 ヒステ	※Model KG 生 リシス	P50 ; = ;	03 のみ ±1.0% 0.5%

1.5. マーキング

本器は下記に示すような仕様プレート(銘板)を備えています(防爆形については3章参照のこと).

	KOS	Smart Valve	Positioner Made in JAPAN
\bigcirc	TYPE	KGP50X3-XXXX-	DATE MMM. YY
\bigcirc	Ser.No.	XXXXXXXXX XXXX	OUTPUT 4-20mA
	REGISTERED INPUT	4-20mADC HART	SUP air 140-800kPa 🕻 🗲

図. 1.5.1 仕様プレート例(非防爆形)

仕様プレートには以下の記載を含みます.

- ➤ TYPE :形式
- Ser. No. : 製造シリアル番号
- ➢ INPUT :入力信号
- ➢ DATE : 製造年月日
- ➢ OUTPUT :開度発信信号
- ➢ SUP air :供給空気圧範囲
- ▶ 原産国
- ▶ 防爆に関する注意事項

1.6. 認証

防爆認証:

TIIS(JIS)	:Ex d IIC T6 Gb
KOSHA	:Ex d IIC T6
IECEx, CCC(NEPSI), CNS	:Ex db IIC T6 Gb
ATEX	: II 2 G Ex db IIC T6 Gb
EAC	: 1 Ex db IIC T6 Gb

C E マーキング:

:EN61000-6-4 EU RoHS 適合規格(2011/65/EU)+(EU)2015/863:EN IEC63000:2018

HART 通信認証: HART7 ※Model KGP5003のみ

1.7. ツール

本器の調整,分解に使用する工具を下記に示します.

- プラスドライバー: No.2 フロントカバー, トルクモータ, パイロットリレー, A/M ユニット
 マイナスドライバー: 6×100mm
- A/M ユニット切替えねじ,パイロットリレー切替えねじ
- ③ 六角レンチ
 3mm: ターミナルカバーの錠ねじ
 4mm: 圧力計ブロック
- ④ スパナ:10mmトルクモータのノズルギャップ調整

1.8. 保管

本器の保管においては、下記の注意事項に従ってください.

未使用のまま,保管する場合;

- 1. 出荷時の梱包状態のまま,保管してください
- 2. 振動・衝撃, ノイズなどのある環境を避け, 風雨に曝されることのない屋内環境にて保管してください

一度使用した後に保管する場合;

- 1. ターミナルカバーをきちんと締めるとともに電気接続口を塞ぎ,湿気や塵の侵入を防いでください
- 2. 空気接続口および排気口をテープで塞ぎ,湿気や塵の侵入を防いでください
- 3. 振動・衝撃, ノイズなどのある環境を避け, 風雨に曝されることのない屋内環境にて保管してください

1.9. 保証

当社製品の無償保証期間は, 貴社ご指定場所に納入後1年間とさせて頂きます.

また,本取扱説明書・カタログ・仕様書等に記載されている条件以外での不適切な使用方法や使用環境に より製品の不具合や故障が生じた場合は,この無償保証期間が適用されませんので予めご了承ください. 尚,前記とは別の契約書による保証条件がある場合には,その条件が優先されるものとします. 2. 設置

· 警告

- 本器の取り付けの際には、必ず供給空気圧が遮断された状態にしてください. フィードバックレバーの動作などにより、死亡または重度な傷害を負う可能性があります。
- 引火性のガスや爆発性のガスがないこと、蒸気や水がかからないことを十分に確認してから作業を 行ってください。

<u> 注意</u>

- 本器の取り付けの際には、激突・落下などによる衝撃を与えないでください、故障や再調整の 要因となります。
- ▶ 作業に必要なスペースを十分に確保してください.
- > 取り付け場所の環境は、本器の仕様範囲を守ってください。
- ポジショナ背面 4 箇所に M8 の取り付け用ねじ穴が設けてありますが、IECEx および ATEX 耐圧防爆仕様ではこのうち右下のねじ穴に六角穴付止めねじが入っています.このねじを外すと、本器の防水・防塵性能が維持できなくなります.ポジショナ取り付けでねじ穴を使用する場合以外は、このねじを取り外さないでください.

2.1. 取り付け姿勢と位置

本器は、下図に示す位置に排気口があります.この排気口が天面を向く姿勢や、排気が十分にできない姿勢で取り付けてのご使用は避けて下さい.

駆動部への取り付けは、50%開度位置において、フィードバックレバーが水平になるように取り付けてください.

図 2.1b 取り付け位置(直線形駆動部の例)

2.2. 直線運動形駆動部への取り付け(5200LA, 6300LA, 5300LA)

図 2.2a 直線運動形駆動部への取り付け例

図 2.2b テンションスプリングの組付位置 テンションスプリングは,図 2.2b に示すようにフィードバックピンの下側にかけるようにしてください.

2.3. 回転運動形駆動部への取り付け(6300RC)

駆動部への取り付けは、50%開度位置において、フィードバックレバーが水平になるように取り付けてください.

図 2.3 回転運動形駆動部への取り付け例

2.4. 回転運動形駆動部への取り付け(VDI/VDE3845)

2.5. 空気接続

▶ 配管接続には、シールテープを使用しないでください.テープ片が詰まり、本器および付属機器の動作不良の原因となります.

空気接続口を図に示します.

接続口のねじ種類は仕様によって異なりますので,仕様をご確認の上,配管作業を行ってください.

図 2.5 空気接続口

2.5.1. 供給空気圧の接続

本器 2 箇所の供給空気圧口【IN】のうち,いずれか一方に供給空気圧を接続してください. なお,使用しない接続口は,ブラインドプラグで封止してください.

2.5.2. 出力空気圧の接続

工場出荷時に駆動部に取り付けられている場合,本器の出力空気圧口と駆動部の入力口をつなぐ配管がな されています.もし,現場にて取り付け作業を行う場合は,本器の出力空気圧口と,駆動部の入力口を接 続してください.

単動形駆動部の場合;

本器を単動形駆動部に使用する場合は、本器の出力空気圧口【OUT-1】と駆動部の入力口を接続してください. なお、使用しない接続口は、ブラインドプラグで封止してください.

複動形駆動部の場合;

本器が複動形駆動部の調整がされている場合,入力信号がゼロのとき,出力空気圧口【OUT-1】は圧力ゼロ, 出力空気圧口【OUT-2】は供給空気圧となります.駆動部の動作方向に合わせて,【OUT-1】と【OUT-2】をそ れぞれ駆動部の入力口へ接続してください.

2.6. 電気接続

- ▶ 配線作業は必ず電源を遮断した状態で施工してください.
- ▶ 電気工事指針等のある国は、その国に指針に従って施工してください.
- 配線工事は、雨天の日または周囲から水のかかる環境下で行わないでください、 漏電や機器の破損の原因になります。

注意

- ▶ 施工しない引込口は、クローズアッププラグを取り付け水分・塵などが浸入しないようにしてください.
- > 引込口のねじ部には、シール材を塗布して水や雨水が浸入しないように施工してください.
- ▶ 接地用又はボンディング用導線は圧着端子(錫メッキ銅)を使用して接続して下さい.
- 接地用又はボンディング用導線は付属のねじ(ばね座金付 M4)使用し、緩みや導線の捻じれがないように 接続を行って下さい.
- > 耐圧防爆形の場合は,内部の接地用に断面積 1mm²以上の導線を使用して下さい.
- ▶ 耐圧防爆形の場合は,外部のボンディング用に断面積 4mm²以上の導線を使用して下さい.
- 使用するケーブルグランドや閉止用部品の防爆仕様が、購入された本器の防爆形に適しているかご確認下さい. (表 2.6a 参照)なお、TIIS 耐圧防爆型を購入された場合は、付属のケーブルグランド以外を使用することはできません.

電気接続周辺の図を以下に示します.

引込口のねじにはいくつかの種類があります.引込部に「M」の刻印のあるものは M20X1.5,「N」の刻印のあるものは 1/2NPT,何も刻印のないものは G1/2 です.

本器は, 4-20mA のループ電流を電源として使用します. また, HART 通信はこのループ電流に重畳させたデジ タル信号によって行います.

端子部の接続作業の際は下記の点に注意して下さい.

- 1. 適切な電線を使用して下さい.
 - ・IN± 及び OUT±に内部接地用導線の線径より太い電線は使用しないで下さい.
- 2. 電線サイズにあった圧着端子を使用して下さい.
 - ・圧着端子には電線抱合範囲があります.大きすぎる圧着端子は電線抜けの原因になります.
 - ・端子台の幅は8.1mm,取付ねじはM4ですので,図2.6bのような丸形の端子でしたらB<8.1mmかつ d2>4mmの圧着端子をご用意ください.
- 3. 電線端末の被覆を剥いて下さい.

・端子の種類や形によって剥く寸法は異なります. 各種端子の取扱い説明書に従って下さい. 図 2.6b は丸形の裸圧着端子の場合の例です.

図 2.6b 圧着端子の例

4. 専用の圧着工具で圧着作業を行って下さい.

・端子のサイズや種類に適切な圧着工具を選択してください. 各工具の取扱い説明書に従って下さい.

以下の手順に従い, 配線を行ってください. 手順 3~5 では上記の指示も参考にして下さい.

- 1. ターミナルカバーを外してください.
- 2. 現場配線を引込口からターミナルボックス内に引き込んでください. その際,設置環境や適用する法令 に従って,ケーブルグランドを使用してください. 引込口のねじ種類は仕様によって異なりますので,仕 様をご確認の上,配線作業を行ってください.
- 3. ループ電流用の配線を,本器の IN+と IN-にそれぞれ接続してください.
- 4. 開度発信用の配線を,本器の OUT+と OUT-にそれぞれ接続してください. ※ Model KGP5003 のみ
- 5. 図 2.6a に示すように, 接地用又はボンディング用導線の 2 つの接続端子部を使用することができます. 接地用接続端子とボンディング用接続端子は電気的に等価です. 設置環境や適用する法令に従っ て配線を行ってください.
- ケーブルグランドを使用してケーブルを固定してください. 作業は各ケーブルグランドの取扱い説明書に 従って行って下さい.
- 7. ターミナルカバーを閉めてください.
- 8. 錠ねじを反時計回りに回し、ターミナルカバーを固定してください.

電気配線図を図 2.6d 及び 2.6e に示します.

図 2.6d ケーブル 1 本(4 芯)による電気配線

図 2.6e ケーブル 2 本(2 芯)による電気配線

※1 Model KGP5003 のみ

図 2.6f 開度発信接続における負荷抵抗と供給電源電圧

負荷抵抗に応じて,図2.6fに示す供給電圧を本器に印加してください.なお,供給電圧は40VDCを超えないようにしてください.

吐喝亚		€4月三月	定格周囲	使用時到達			
的漆形		的漆配方	温度範囲	温度範囲			
TIIS	G1/2	Ex d IIC Gb	-20℃~+60℃	-20℃~+63℃			
CCC(NEPSI)	1/2NPT	Ex db IIC Gb	-40℃~+70℃	-40℃~+73℃			
KOSHA	1/2NPT	Ex d IIC	-20℃~+60℃	-20℃~+63℃			
IECEx, CNS	1/2NPT or M20X1.5	Ex db IIC Gb	-40℃~+70℃	-40℃~+72℃			
ATEX	1/2NPT or M20X1.5	ll 2 G Ex db llC Gb	-40℃~+70℃	-40℃~+72℃			
EAC	1/2NPT or M20X1.5	1 Ex db IIC Gb	-40℃~+70℃	-40℃~+72℃			

表 2.6a 防爆形別ケーブルグランド及び閉止用部品仕様

2.7. 固定絞りプレート(オプション):小型駆動部におけるハンチング抑制用パーツ

駆動部が小型でかつパッキンフリクションによるヒステリシスが大きい場合,本機にプリセットされた PID パラメータ では期待する制御がされずにハンチングの発生など,制御性能が悪化する場合があります. このような現象を改善するためには,固定絞りプレートの使用が有効です.

2.7.1. 固定絞りプレートの適用の目安

以下に記載の駆動部サイズにおいてヒステリシスが記載の数値(%)以上になった場合に固定絞りプレートの使用 を推奨します.

駆動部サイズ:5221LA, 6315LA, AT201, AT251, AT301, AT351

ヒステリシス

単動形駆動部の場合:スプリングレンジに対する出力圧差の割合が30%以上

例) 差圧 36kPa 以上, スプリットレンジ 120kPa(80-200kPa)

複動形駆動部の場合:供給空気圧に対する出力圧差の割合が15%以上

例)差圧 60kPa 以上,供給圧 400kPa

2.7.2. 固定絞りプレートの取り付け

固定絞りプレートを取り付けることにより, 駆動部への供給空気圧力の流量を低減し, ハンチングを抑制しま す.

取り付け手順)

- 1. 圧力計ブロックを固定している M5 ねじ 2 本を外す.
- 2. 0リングをキズに注意して外す.
- 3. 先に固定絞りプレートを出力空気圧口(図2.7.2参照)へ入れ,次にOリングを入れます.
 - ・単動形駆動部の場合は、出力空気口1【OUT-1】に取り付けます.

・複動形駆動部の場合は、出力空気口1【OUT-1】と出力空気口2【OUT-2】のそれぞれに取り付けます.

4. 圧力計ブロックを M5 ねじで締めます. 推奨締付トルク: 300~350N・cm

※固定絞りプレートの取り付け後に,取扱説明書 <4.4.4 固定絞り取り付け時の設定手順>を参考に本機の設定を行ってください.

3.防爆形について

Note

本器のフロントカバーは運転中も開けることができます.

注意

3.1. TIIS 耐圧防爆形

A) 製品形式 : KGP51XX (引込口:G1/2)

 B) 防爆表示 : Ex d IIC T6 Gb(認証番号:TC22443X)
 IIC:本機器は工場・事業場の可燃性ガス蒸気用です.水素・アセチレンなどの可燃 性ガス雰囲気での使用に適する IIC に分類される防爆構造です. T6:本器の最高表面温度は周囲温度+60℃のときには+85℃まで上昇する可能性 があります.
 Gb:本器の使用可能場所は Zone1(第1種危険場所),および Zone2(第2 種危険場所)の危険箇所です.Zone0の危険箇所では使用はできません.
 C) 入力電流 : 4~20mA(標準入力範囲) : 3.8~24mA(最大許容入力範囲 ※1)
 D) 周囲温度範囲 : -20℃ ≤ T amb ≤ +60℃
 E) 周囲大気圧 : 80kPaA~110kPaA(絶対圧)
 c) 液田増換 : T増電気影(低防爆性給)(国際教会性(低性給)) MAGCU TD 46:2015

- F) 適用規格 :工場電気設備防爆指針(国際整合技術指針) JNIOSH-TR-46:2015
- G) 仕様プレート

- H) 安全に使用するための注意事項
 - ◆ 配線工事や調整作業を行うときは、周囲に爆発性ガスが存在しないことを確認してから作業を行ってください。
 - ◆ 耐圧防爆仕様をご使用の際,運転中ならびに通電中はターミナルカバーを開けないでください.
 - ◆ 運転中はターミナルカバーをきちんと閉め, 錠ねじにより確実にロックしてください.
 - ◆ 10 章に示す部品番号 12,19,24,25 の締付けねじを外す作業等を含む本体の分解ならびにポテンショ メータ部の分解は行わないでください.防爆性能が維持できなくなる可能性があります.
 - ◆ 引込口には付属の耐圧パッキン式のケーブルグランドを使用してください.防爆性能が維持できなくなるため付属以外のケーブルグランドはご使用になれません.
 - ◆ 設置に適したケーブルパッキン(シールリング)は、ご使用になるケーブル径によって異なります。ケーブル 径に適したケーブルパッキンをご使用下さい。
 - ◆ 使用しない引込口は付属の閉止用部品で塞いで下さい.
 - ◆ IP66 を満足するためには、付属のケーブルグランドを使用し十分な防水処理を行ってください. ※2
 - ◆ ハウジング、ベース、端子台カバー、ガラス窓のいずれかに損傷やクラックが認められた場合には、直ちに使用を中止し、巻末の問合せ先にご連絡ください.

※1 ポジショナとしての動作保証はできないが,永久的な損傷を受けない範囲 ※2 IP66 は TÜV Rheinland による認証です.

3.2. CCC(NEPSI)耐圧防爆形

- A) 製品形式 : KGP52XX(引込口:1/2NPT)
- B) 防爆表示 : Ex db IIC T6 Gb (CCC 認証番号: 2020322307000438

NEPSI 認証番号:GYJ23.1345X)

IIC:本機器は工場・事業場の可燃性ガス蒸気用です.水素・アセチレンなどの可燃性ガス雰囲気での使用に適する IIC に分類される防爆構造です.

T6:本器の最高表面温度は周囲温度+70℃のときには+85℃まで上昇する可能性があります.

- Gb:本器の使用可能場所は Zone1(第1種危険場所),および Zone2(第2 種危険場所)の危険箇所です. Zone0の危険箇所では使用はできません.
- C) 入力電流 : 4~20mA
- D) 周囲温度範囲 :-40℃ ≤ T amb ≤ +70℃
- E) 周囲大気圧 : 80kPaA~110kPaA(絶対圧)
- F) 適用規格 : GB/T 3836.1-2021, GB/T 3836.2-2021
- G) 仕様プレート

ſ		KGP	52X3, Ex db IIC T6 Gb,	-40°C≤Tamb	≤70°C, IP66	KC	S) 智能	阀门定	位	器	Mad	e in JAPAN	
	NEPSI	\bigcirc	螺丝性能等级:A	2-70		型序引	号 利号	KGP52X3- XXXXXXXX	XXXX- XXXX	日输	<u>期</u> 出	MMM. 'YY 4-20mA	\circ	_
	APPROVED GYJ23.1345X		注意:必须断电源后	于开盖	HART REGISTERED	输	入	4-20mADC	HART	供	〔压	140-800k	Pa	E

- H) 安全に使用するための注意事項
 - ◆ 配線工事や調整作業を行うときは、周囲に爆発性ガスが存在しないことを確認してから作業を行ってください。
 - ◆ 耐圧防爆仕様をご使用の際, 運転中ならびに通電中はターミナルカバーを開けないでください.
 - ◆ 運転中はターミナルカバーをきちんと閉め、錠ねじにより確実にロックしてください.
 - ◆ 10 章に示す部品番号 12,19,24,25 の締付けねじを外す作業等を含む本体の分解ならびにポテンショ メータ部の分解は行わないでください.防爆性能が維持できなくなる可能性があります.
 - ◆ 引込口には上記 B)を満足する耐圧パッキン式のケーブルグランドを使用してください. 使用しない引 込口には上記 B)を満足する閉止用部品で塞いでください.
 - ◆ IP66 を満足するためには,使用に適したケーブルグランドを選定するとともに十分な防水処理を行って ください.

3.3. KOSHA 耐圧防爆形

- A) 製品形式 : KGP53XX (引込口:1/2NPT)
- B) 防爆表示
 : Ex d IIC T6(認証番号: 17-AV4BO-0350X)
 IIC:本機器は工場・事業場の可燃性ガス蒸気用です.水素・アセチレンなどの可燃 性ガス雰囲気での使用に適する IIC に分類される防爆構造です.
 T6:本器の最高表面温度は周囲温度+60℃のときには+85℃まで上昇する可能性 があります.
 本器の使用可能場所は Zone1(第1種危険場所),および Zone2(第2 種危険場所)の危険箇所です. Zone0の危険箇所では使用はできません.
- C) 入力電流 : 4~20mA
- D) 周囲温度範囲 :-20℃ ≤Tamb≤+60℃
- E) 周囲大気圧 : 80kPaA~110kPaA(絶対圧)
- F) 適用規格 : 2020-33
- G) 仕様プレート

KGP53X3, Ex d IIC T6 Gb, -20°C≤Tamb≤+60°C, IP66 KOSO Smart Valve Positioner Made in JAPAN HART TYPE KGP53X3-XXXX- DATE MMM. 'YY 차단 후 1분 이내에는 Ser.No. XXXXXXXX XXXX OUTPUT 4-20mA SUP air 140-800kPa CE INPUT 4-20mADC HART 이상의 케이블과 절연전선을 사용해 주십시오

- H) 安全に使用するための注意事項
 - ◆ 配線工事や調整作業を行うときは、周囲に爆発性ガスが存在しないことを確認してから作業を行ってください。
 - ◆ 耐圧防爆仕様をご使用の際,運転中ならびに通電中はターミナルカバーを開けないでください.
 - ◆ 運転中はターミナルカバーをきちんと閉め、錠ねじにより確実にロックしてください.
 - ◆ 10章に示す部品番号 12,19,24,25 の締付けねじを外す作業等を含む本体の分解ならびにポテンショ メータ部の分解は行わないでください.防爆性能が維持できなくなる可能性があります.
 - ◆ 引込口には上記 B)を満足する耐圧パッキン式のケーブルグランドを使用してください. 使用しない引 込口には上記 B)を満足する閉止用部品で塞いでください.
 - ◆ IP66 を満足するためには、使用に適したケーブルグランドを選定するとともに十分な防水処理を行って ください.

3.4. IECEx 耐圧防爆形

- A) 製品形式 : KGP54XX(引込口:1/2NPT 又は M20)
- B) 防爆表示 : Ex db IIC T6 Gb(認証番号: IECEx DEK 17.0037X)
 IIC:本機器は工場・事業場の可燃性ガス蒸気用です.水素・アセチレンなどの可燃 性ガス雰囲気での使用に適する IIC に分類される防爆構造です.
 T6:本器の最高表面温度は周囲温度+70℃のときには+85℃まで上昇する可能性 があります.
 Gb:本器の使用可能場所は Zone1(第1種危険場所),および Zone2(第2 種危険場所)の危険箇所です. Zone0の危険箇所では使用はできません.
 C) 入力電流 : 4~20mA
 D) 周囲温度範囲 : -40℃ ≤ Tamb ≤ +70℃
- E) 周囲大気圧 : 80kPaA~110kPaA(絶対圧)
- F) 適用規格 : IEC 60079-0 : 2011, IEC 60079-1 : 2014-06
- G) 仕様プレート

KGP5	4X3, Ex db IIC T6 Gb, -40°C≤Tamb≤ <u>70°C, IP66</u>	KOSC	Smart Valve	Position	NEI Made in JAPAN
\cap	WARNING! Install in accordance with instruction manual.	TYPE	KGP54X3-XXXX-	DATE	MMM. 'YY
	Do not open when an explosive gas atmosphere is present. Use a cable and cable gland rated for at least +72°C.	Ser.No.	XXXXXXXX XXXX	OUTPUT	4-20mA
IECEx DEK 17.0037X	1-16-7, NIHOMBASHI, CHUO-KU, TOKYO, 103-0027, JAPAN	INPUT	4-20mADC HART	SUP air	140-800kPa

- H) 安全に使用するための注意事項
 - ◆ 配線工事や調整作業を行うときは、周囲に爆発性ガスが存在しないことを確認してから作業を行ってください.
 - ◆ 耐圧防爆仕様をご使用の際,運転中ならびに通電中はターミナルカバーを開けないでください.
 - ◆ 運転中はターミナルカバーをきちんと閉め、錠ねじにより確実にロックしてください.
 - ◆ 10章に示す部品番号 12,19,24,25 の締付けねじを外す作業等を含む本体の分解ならびにポテンショ メータ部の分解は行わないでください.防爆性能が維持できなくなる可能性があります.
 - ◆ 引込口には上記 B)を満足する耐圧パッキン式のケーブルグランドを使用してください. 使用しない引 込口には上記 B)を満足する閉止用部品で塞いでください.
 - ◆ IP66 を満足するためには、使用に適したケーブルグランドを選定するとともに十分な防水処理を行って ください.
 - ◆ 背面の4箇所のM8取り付け用ねじ穴のうち右下のねじ穴には六角穴付止めねじが入っています.このねじを外すと、本器の防水・防塵性能が維持できなくなります.ポジショナ取り付けでねじ穴を使用する場合以外は、このねじを取り外さないでください.

3.5. ATEX 耐圧防爆形

- A) 製品形式 : KGP55XX (引込口: 1/2NPT 又は M20)
- B) 防爆表示
 : II 2 G Ex db IIC T6 Gb(認証番号: DEKRA 17ATEX0076 X)
 IIC:本機器は工場・事業場の可燃性ガス蒸気用です.水素・アセチレンなどの可燃 性ガス雰囲気での使用に適する IIC に分類される防爆構造です.
 T6:本器の最高表面温度は周囲温度+70℃のときには+85℃まで上昇する可能性 があります.
 Gb:本器の使用可能場所は Zone1(第1種危険場所),および Zone2(第2 種危険場所)の危険箇所です. Zone0の危険箇所では使用はできません.
- C) 入力電流 : 4~20mA
- D) 周囲温度範囲 :-40℃ ≤ Tamb ≤+70℃
- E) 周囲大気圧 : 80kPaA~110kPaA(絶対圧)
- F) 適用規格 : EN 60079-0 : 2012 +A11, EN 60079-1 : 2014
- G) 仕様プレート

- H) 安全に使用するための注意事項
 - ◆ 配線工事や調整作業を行うときは、周囲に爆発性ガスが存在しないことを確認してから作業を行ってください.
 - ◆ 耐圧防爆仕様をご使用の際,運転中ならびに通電中はターミナルカバーを開けないでください.
 - ◆ 運転中はターミナルカバーをきちんと閉め、錠ねじにより確実にロックしてください.
 - ◆ 10章に示す部品番号 12,19,24,25 の締付けねじを外す作業等を含む本体の分解ならびにポテンショ メータ部の分解は行わないでください.防爆性能が維持できなくなる可能性があります.
 - ◆ 引込口には上記 B)を満足する耐圧パッキン式のケーブルグランドを使用してください. 使用しない引 込口には上記 B)を満足する閉止用部品で塞いでください.
 - ◆ IP66 を満足するためには、使用に適したケーブルグランドを選定するとともに十分な防水処理を行って ください.
 - ◆ 背面の4箇所のM8取り付け用ねじ穴のうち右下のねじ穴には六角穴付止めねじが入っています.このねじを外すと、本器の防水・防塵性能が維持できなくなります.ポジショナ取り付けでねじ穴を使用する場合以外は、このねじを取り外さないでください.

3.6. EAC 耐圧防爆形

A) 製品形式 : KGP56XX (引込口:1/2NPT 又は M20)

 B) 防爆表示 : 1 Ex db IIC T6 Gb(認証番号: EA 3C RU C-JP.AД07.B.04614/22)
 IIC:本機器は工場・事業場の可燃性ガス蒸気用です.水素・アセチレンなどの可燃 性ガス雰囲気での使用に適する IIC に分類される防爆構造です.
 T6:本器の最高表面温度は周囲温度+70℃のときには+85℃まで上昇する可能性 があります.
 Gb:本器の使用可能場所は Zone1(第1種危険場所),および Zone2(第2 種危険場所)の危険箇所です. Zone0の危険箇所では使用はできません.

- C) 入力電流 : 4~20mA
- D) 周囲温度範囲 :-40℃ ≤ Tamb ≤+70℃
- E) 周囲大気圧 : 80kPaA~110kPaA(絶対圧)

F) 適用規格 : FOCT 31610.0-2014 (IEC 60079-0: 2011), FOCT IEC 60079-1-2013

G) 仕様プレート

(KGP56X3, 1 Ex d IIC T6 Gb, -40°C≤Tamb≤+70°C, IP66	KOSC	• Интеллектуальны	ИЙ ПОЗИЦИОН	Эр Сделано в Яп	юнии
-	СССППП ПРЕДУПРЕЖДЕНИЕ! Устанавливать в соответствии с инсточинией по эксплуатации.	ТИП	KGP56X3-XXXX-	ДАТА М	IMM. 'YY 🔿	١
	Не открывать при налички взрывоопасной газовой среды. Использовать кабельный сальник, рассчитанные как минимум на +72°С.	Cep. №	YYMMXXXX XXXX	BLIX. CMFHAN 4	-20mA	0344
~	ЕАЭС RU C-JP.AД07.B.04614/22 1-16-7, NIHOMBASHI, CHUO-KU, TOKYO, 103-0027, JAPAN	ВХ. СИГНАЛ	4-20mADC HART	ПИТАНИЕ 1-	40-800kPa	こも

- H) 安全に使用するための注意事項
 - ◆ 配線工事や調整作業を行うときは、周囲に爆発性ガスが存在しないことを確認してから作業を行ってください。
 - ◆ 耐圧防爆仕様をご使用の際,運転中ならびに通電中はターミナルカバーを開けないでください.
 - ◆ 運転中はターミナルカバーをきちんと閉め, 錠ねじにより確実にロックしてください.
 - ◆ 10章に示す部品番号 12,19,24,25 の締付けねじを外す作業等を含む本体の分解ならびにポテンショ メータ部の分解は行わないでください.防爆性能が維持できなくなる可能性があります.
 - ◆ 引込口には上記 B)を満足する耐圧パッキン式のケーブルグランドを使用してください. 使用しない引 込口には上記 B)を満足する閉止用部品で塞いでください.
 - ◆ IP66 を満足するためには、使用に適したケーブルグランドを選定するとともに十分な防水処理を行って ください.
 - ◆ 背面の4箇所のM8取り付け用ねじ穴のうち右下のねじ穴には六角穴付止めねじが入っています.このねじを外すと、本器の防水・防塵性能が維持できなくなります.ポジショナ取り付けでねじ穴を使用する場合以外は、このねじを取り外さないでください.

3.7. CNS 耐圧防爆形

- A) 製品形式 : KGP54XX (引込口:1/2NPT 又は M20)
- B) 防爆表示
 : Ex db IIC T6 Gb(認証番号: TD0401AE, TD04010D)
 IIC:本機器は工場・事業場の可燃性ガス蒸気用です.水素・アセチレンなどの可燃 性ガス雰囲気での使用に適する IIC に分類される防爆構造です.
 T6:本器の最高表面温度は周囲温度+70℃のときには+85℃まで上昇する可能性 があります.
 Gb:本器の使用可能場所は Zone1(第1種危険場所),および Zone2(第2 種危険場所)の危険箇所です. Zone0の危険箇所では使用はできません.
- C) 入力電流 : 4~20mA
- D) 周囲温度範囲 :-40℃ ≤ Tamb ≤+70℃
- E) 周囲大気圧 : 80kPaA~110kPaA(絶対圧)
- F) 適用規格 : CNS 3376-0/C 1038-0 (IEC 60079-0 : 2011), CNS 3376-1/C 1038-1 (IEC 60079-1 : 2014-06)
- G) 仕様プレート

KGP54X3, Ex db IIC T6 Gb, -40°C <tamb≤70°c, in="" ip66="" japan<="" koso="" made="" positioner="" smart="" th="" valve=""></tamb≤70°c,>						
\bigcirc	WARNING! Install in accordance with instruction manual.	TYPE	KGP54X3-XXXX-	DATE	MMM. 'YY	
\bigcirc	Do not open when an explosive gas atmosphere is present. Use a cable and cable gland rated for at least +72°C.	Ser.No.	XXXXXXXX XXXX	OUTPUT	4-20mA	
IECEx DEK 17.0037X	1-16-7, NIHOMBASHI, CHUO-KU, TOKYO, 103-0027, JAPAN	INPUT	4-20mADC HART	SUP air	140-800kPa	

H) TS ラベル

- i) 安全に使用するための注意事項
 - ◆ 配線工事や調整作業を行うときは、周囲に爆発性ガスが存在しないことを確認してから作業を行ってください。
 - ◆ 耐圧防爆仕様をご使用の際,運転中ならびに通電中はターミナルカバーを開けないでください.
 - ◆ 運転中はターミナルカバーをきちんと閉め, 錠ねじにより確実にロックしてください.
 - ◆ 10章に示す部品番号 12,19,24,25 の締付けねじを外す作業等を含む本体の分解ならびにポテンショ メータ部の分解は行わないでください.防爆性能が維持できなくなる可能性があります.
 - ◆ 引込口には上記 B)を満足する耐圧パッキン式のケーブルグランドを使用してください. 使用しない引 込口には上記 B)を満足する閉止用部品で塞いでください.
 - ◆ IP66 を満足するためには、使用に適したケーブルグランドを選定するとともに十分な防水処理を行って ください.
 - ◆ 背面の4箇所のM8取り付け用ねじ穴のうち右下のねじ穴には六角穴付止めねじが入っています.このねじを外すと、本器の防水・防塵性能が維持できなくなります.ポジショナ取り付けでねじ穴を使用する場合以外は、このねじを取り外さないでください.

4. 設定とインフォメーション

警告

- ▶ 設定作業により、パラメータ変更などを行うとバルブが予期せぬ開閉をする可能性があります。 実施の際にはオフラインにするなど、プロセスに直接影響がない状態にしてから実施してください。
- ▶ 通電後や通電中に、本器のターミナルカバーは開けないでください。やむを得ず開ける場合は、引火性の ガスや爆発性のガスがないこと、および蒸気や水のかからないことを十分に確認してから行ってください.
- ▶ 設定作業中には、可動部に触れないで下さい、人身事故となる恐れがあります。
- > マグネットやマグネットドライバーを本器に近付けないでください.調節弁が突然動作し重度な傷害 を負う可能性があります.
- ▶ 本器の近くではトランシーバーを使用しないでください.
- 4.1. ローカルユーザーインターフェース(LUI)
- 4.1.1. フロントカバーの取り付け・取り外し

て作業を実施してください.

トルクモータの可動部分に触れると、本器からの出力空気圧が変化し思わぬ事故につながりますので ご注意ください.

ローカルユーザーインターフェースでの設定、パイロットリレー、トルクモータならびに A/M ユニットでの調整・設定 作業は、フロントカバーを外して行ってください、図の4箇所のカバーボルトにより、フロントカバーの取り付け、 取り外しを行ってください. なお, 取り付けの際は, ボルトの締め過ぎにご注意ください. 推奨締付けトルク: 150N·cm

図 4.1.1 フロントカバー

4.1.2. 操作ボタン

ローカルユーザーインターフェース(以下 LUI)は、本器の設定、運転状態の監視、メンテナンス作業などに使用することができます.LUIは、最大 8 行を表示可能な LCD と 4 つのプッシュボタンから構成されています.

図 4.1.2 ローカルユーザーインターフェース

マーク		名称	用途		
Esc	(\mathbf{r})	Escape ボタン	各メニューから戻るときに使用します		
Ent	$\textcircled{\begin{tabular}{c} \hline \hline$	Enter ボタン	各メニューの決定に使用します		
UP		UP ボタン			
DN		DOWN ボタン	項目の選択、値の増減等に使用します		

4.1.3. LCD の構成

LCD 画面の遷移を下図に示します.

モニター画面の構成を下図に示します.

パスワード設定表示;

パスワード設定有効時: 20マーク

パスワード設定解除時/設定なし: C^つマーク

4.1.4. LCD のメニューツリー

図 4.1.4a インフォメーションメニュー

MENU

- 1. Information
- 2. Setup
- 3. Maintenance
- 4. Diag. & Alarms

4.2. 設定作業フロー

本器をコントロールバルブに組付けて購入された場合,本節に記載した設定は完了していますので,新たな設定は不要です.本器を単体で購入された場合や,コントロールバルブから外してメンテナンス等を実施した場合は,必要に応じて,以下に示す設定作業を実施してください.

4.3. 基本設定

4.3.1. ポジショナで制御を行うために必要な基本設定

ポジショナで制御する上で必要な基本項目を設定します.次節以降の作業を行う前に必ず実施してください.

MENU > Setup >Basic setup (2-1-)

表 4.3	基本設定項目の一	-覧
-------	----------	----

項目	説明	パラメータ	初期値
駆動部動作	駆動部の操作軸の動きを設定します	Linear / Rotary	×1
[Actuator motion]			/// 1
駆動部タイプ	駆動部の駆動方式を設定します		
[Actuator type]	単動形駆動部のとき:Single	Single / Double	× 1
	複動形駆動部のとき:Double	/ 5300	<u>~1</u>
	KOSO 製 倍圧アクチュエータのとき:5300		
バルブ動作方	Pout1 出力時のバルブの動作方向を設定します		
向	Air to Open のとき:ATO	ATO / ATC	ATO
[Valve action]	Air to Close のとき:ATC		
パッキンタイプ	弁本体部に使われているパッキンの種類を設定します		
[Packing friction]	PTFE など低フリクションのとき:Low	Low / High	Low
	GRAFOIL など高フリクションのとき:High	LOW / Thgh	Ж2
	※中間のフリクションのときは,Highを選択してください		
ブースターリレ	ブースターリレーの状態を設定します		
ーの有無	ブースターリレー無の場合:Disable		
[Booster option]	ブースターリレー有の場合:Enable	Disable / Enable	Dicabla
	Enable 選択の場合		→× 2
	・ブースターの流量係数が Cv1.5 を超える場合:Large	選択)	/Z
	・ブースターの流量係数が Cv1.5 以内の場合:Small		
	を設定します.		
セットポイントの	4-20mA の制御入力信号を,本器が認識する方向を		
方向	設定します	Normal / Dovorco	Normal
[Set point dir.]	Normal 選択時:4mA=0%,20mA=100%	Normal / Reverse	NOTITIAL
	Reverse 選択時:4mA=100%,20mA=0%		
開度発信信号	本器が出力する開度発信信号の方向を設定します		
の方向 ※3	Normal 選択時: 0%=4mA, 100%=20mA	Normal / Reverse	Normal
[Posi. transmit. dir.]	Reverse 選択時: 0%=20mA, 100%=4mA		

※1・・・型番選定に従い,工場出荷時に設定されています.

※2・・・駆動部組付の場合は、工場出荷時に設定されています.

※3・・・Model KGP5003 のみ

4.3.2. 駆動部の動作設定パターン一覧

調節弁動作		4→20mA弁閉 (Signal to Close)		4→20mA弁開 (Signal to Open)			
	弁体動	乍		正栓 (ステム下降で閉)			
駆動部動作		正作動 逆作動 (DA) (RA)		正作動 (DA)	逆作動 (RA)		
	配會			Pout1			
ポジショナ	バルブ Valve	動作方向 e action	ATC	ATO	ATC	ATO	
設定	セットポー Set p	んしょうしん ひんしん (ントの方向 oint dir.	Rev	erse	Normal		
	4n		開		閉		
	分月月	LCD表示	100%		0%		
総合動作	카페쾨	20mA入力	閉]	月	日 刊	
和心口当切作日		LCD表示	0%		100%		
	空気	王喪失時	開	閉	開	閉	
	Or	mA時	開	閉	開	閉	
		Pout1 Pout1 Pout1 OPEN @4mA CLOSE @20mA	Pout1 Pout1 CLOSE @20mA	Pout1 OPEN @20mA CLOSE @4mA	Pout1 Pout1 CLOSE @4mA		

表 4.3.2a 直線運動単動形駆動部・動作一覧 【正栓の場合】

	調節弁動	作	4→20mA弁閉 (Signal to Close)		4→20mA弁開 (Signal to Open)		
	弁体動	乍		逆 (ステム下	 降で開)		
駆動部動作		正作動 逆作動 正作動 (DA) (RA) (DA)		正作動 (DA)	逆作動 (RA)		
	西己會	管接 続		Poi	ut1		
ポジショナ	バルブ Valve	動作方向 e action	ΑΤΟ	ATC	ΑΤΟ	ATC	
設定	セットポー Set p	イントの方向 oint dir.	Rev	erse	Normal		
		4mA入力	開		閉		
	公問問	LCD表示	100%		0%		
纷合动作	커메세	20mA入力	閉	閉		開	
芯口 到1 F		LCD表示	0'	%	100%		
	空気	王喪失時	閉	開	閉	開	
	Or	mA時	閉	開	閉	開	
		Pout1 CLOSE @20mA OPEN @4mA	Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 PopeN @4mA	Pout1 CLOSE @4mA OPEN @20mA	Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 PopeN @20mA		

表 4.3.2b(参考表) 直線運動単動形駆動部・動作一覧 【逆栓の場合】

調節弁動作		4→20mA弁閉 (Signal to Close)		4→20mA弁開 (Signal to Open)			
弁体動作		正栓 (ステム下降で閉)					
m)答+交结	ステム	a上昇側	Pout2	Pout1	Pout2	Pout1	
땁呂按杭	ステム	a下降側	Pout1	Pout2	Pout1	Pout2	
ポジショナ	バルブ Valve	動作方向 e action	ATC	ATO	ATC	ΑΤΟ	
設定	セットポィ Set p	/ントの方向 oint dir.	Rev	erse	Normal		
		4mA入力	開		閉		
	分問問	LCD表示	100%		0%		
公会动作	카페쾨	20mA入力	閉	閉		開	
松口助作		LCD表示	0'	0%		100%	
	空気	E喪失時	ሻ		定		
	Or	nA時	開	閉	開	閉	
		Pout1 Pout2 Pout2 Pout2 Pout2 CLOSE @20mA	Pout2 Pout1 Pout1 Pout1 CLOSE @20mA	Pout1 Pout2 Pout2 CLOSE @4mA	Pout2 Pout1 Pout1 CLOSE @4mA		

表 4.3.2 c 直線運動複動形駆動部・動作一覧【正栓の場合】

調節弁動作		4→20mA弁閉 (Signal to Close)		4→20mA弁開 (Signal to Open)			
	弁体動(乍	逆栓 (ステム下降で開)				
而答按结	ステム	a上昇側	Pout2	Pout1	Pout2	Pout1	
距官按杭	ステム	a下降側	Pout1	Pout2	Pout1	Pout2	
ポジショナ	バルブ Valve	動作方向 e action	ATO	ATC	ATO	ATC	
設定	セットポィ Set p	/ントの方向 oint dir.	Rev	erse	Normal		
		4mA入力	開		閉		
	分問問	LCD表示	100%		0%		
松今動佐	카페쾨	20mA入力		閉		開	
∾□≝Л↑₽		LCD表示	0	0%		100%	
	空気	E喪失時	不		定		
	Or	nA時	閉	開	閉	開	
		Pout1 Pout2 Pout2 CLOSE @20mA OPEN @4mA	Pout2 Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 Pout2 Pout2 Pout2 Pout2 Pout2 Pout2 Pout2 Pout2 Pout2 Pout2 Pout2 Pout2	Pout1 Pout2	Pout2 Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 Pout1 Pout2 @4mA @20mA		

表 4.3.2 d(参考表) 直線運動複動形駆動部・動作一覧 【逆栓の場合】

調節弁動作		4→20mA弁閉 (Signal to Close)		4→20mA弁開 (Signal to Open)			
	弁体動	乍		反時計	回りで開		
駆動部動作		作	Pout1増で 時計回り 反時計回り		Pout1増で 時計回り	Pout1増で 反時計回り	
	西己會			Poi	ut1		
ポジショナ	バルブ Valve	動作方向 e action	ATC	ATO	ATC	ATO	
設定	セットポイ Set p	んとうしょう (ントの方向 oint dir.	Rev	erse	Nor	Normal	
		4mA入力	開		閉		
	立開閉	LCD表示	100%		0%		
総合動作	נגונ ת ודל	20mA入力	閉		開		
		LCD表示	0	0%		100%	
	空気	王喪失時	開	閉	開	閉	
	Or	mA時	開	閉	開	閉	
		Pout1增加時の動き Open Close @4mA @20mA	Pout1増加時の動き Open Close @4mA @20mA	Pout1增加時の動き Open Close @20mA @4mA	Pout1増加時の動き Open @20mA Close @4mA		

表 4.3.2e 回転運動単動形駆動部・動作一覧 【反時計回り開の場合】

調節弁動作		4→20mA弁閉 (Signal to Close)		4→20mA弁開 (Signal to Open)				
	弁体動	乍		反時計回りで閉				
	駆動部動	作	Pout1増でPout1増で時計回り反時計回り時計回り		Pout1増で 反時計回り			
	西己管			Pout1				
ポジショナ	バルブ Valve	動作方向 e action	ATO	ATC	ATO	ATC		
設定	セットポィ Set p	/ントの方向 oint dir.	Rev	erse	Nor	Normal		
		4mA入力	開		閉			
	公開閉	LCD表示	100%		0%			
総合動作	נגונ ת ודל	20mA入力	閉		開			
小心口主刀下		LCD表示	0'	0%		100%		
	空気	E喪失時	閉	開	閉	開		
	Or	nA時	閉	開	閉	開		
		Pout1増加時の動き Close Open @20mA @4mA	Pout1増加時の動き Close Open @20mA @4mA	Pout1增加時の動き Close Open @4mA @20mA	Pout1増加時の動き Close Open @4mA @20mA			

表 4.3.2f(参考表)回転運動単動形駆動部・動作一覧【反時計回り閉の場合】

調節弁動作		4→20mA弁閉 (Signal to Close)		4→20mA弁開 (Signal to Open)		
	弁体動	乍		反時計	回りで開	
	駆動部動	作	Pout1増で 時計回り	Pout1増でPout1増でPout1増で時計回り反時計回り時計回り		Pout1増で 反時計回り
≖□答+立∕主	空気 反時	に圧増加 計回り側	Pout2	Pout1	Pout2	Pout1
땁官按杭	空気 時言	に圧増加 十回り側	Pout1	Pout2	Pout1	Pout2
ポジショナ	バルブ Valve	動作方向 e action	ATC	ATO	ATC	ΑΤΟ
設定	セットポー Set p	んとうしょう (シトの方向 oint dir.	Reverse		Normal	
		4mA入力	開		閉	
	分月月	LCD表示	100%		0%	
纷合動作	카페쾨	20mA入力]	開	
^砣 口 助 作		LCD表示	0%		100%	
	空気	王喪失時		不定		
	Or	mA時	開	閉	開	閉
		Pout1增加時の動き Open Close @4mA @20mA	Pout1增加時の動き Open Close @4mA @20mA	Pout1増加時の動き Open Close ®20mA @4mA	Pout1増加時の動き Open Close @20mA @4mA	

表 4.3.2g 回転運動複動形駆動部・動作一覧 【反時計回り開の場合】

調節弁動作		4→20mA弁閉 (Signal to Close)		4→20mA弁開 (Signal to Open)		
	弁体動	乍		反時計	回りで閉	
	駆動部動	作	Pout1増で 時計回り 反時計回り		Pout1増で 時計回り	Pout1増で 反時計回り
#1/45+±4/±	空気 反時	に圧増加 計回り側	Pout2	Pout1	Pout2	Pout1
땁官 按杭	空気 時言	に圧増加 十回り側	Pout1	Pout2	Pout1	Pout2
ポジショナ	バルブ Valve	動作方向 e action	ATO	ATC	ATO	ATC
設定	セットポー Set p	イントの方向 oint dir.	Rev	erse	Normal	
		4mA入力	開		閉	
	ム8888	LCD表示	100%		0%	
必合動作	커페제	20mA入力	閉		開	
松 百 期作		LCD表示	0%		100%	
	空気	王喪失時		不	定	
	0mA時		閉	開	開	閉
		Pout1增加時の動き Close Open @20mA @4mA	Pout1増加時の動き Close Open @20mA @4mA	Pout1増加時の動き Close Open @4mA @20mA	Pout1増加時の動き Close Open @4mA @20mA	

表 4.3.2h 回転運動複動形駆動部・動作一覧 【反時計回り閉の場合】

表 4.3.2i 電源断の状態

OUT-2 :	ルー形式	電力の喪失
出力空気圧口 2	単動形正作動	OUT-1 の出力空気圧 0
OUT-1 :	複動形	OUT-1の出力空気圧 0
出力空気圧口1		001-20百万至或庄供稻空或庄

KOSO ~ The Most Cost Effective, Creative Valve Solutions ~

4.4. 簡易チューニング

本器が取り付けた駆動部に対してきちんと動くようにするための操作になります. コントロールバルブのゼロ点・スパン点の設定, 制御に適した PID パラメータの選定, その他制御に必要なパラメータを簡単に設定することができます.

Note

本節の作業前には, 必ず 4.3 節に示されている基本設定項目を入力してください. 設定が誤っていると適切な PID パラメータが選択されません.

4.4.1. フルオートチューン

コントロールバルブのゼロ点・スパン点の検出・設定, コントロールバルブの制御に適した PID パラメータの選定, IP シグナルバイアス点の検出・設定, を一連の動作で自動的に設定します.

Note

駆動部のサイズに応じて設定にかかる時間が異なります.

実行;

MENU > Setup >Easy tuning > Full autotune (2-2-1)

実行結果の確認;

MENU > Setup >Easy tuning > Tuning result (2-2-2)

4.4.2. ポジションセットアップ

コントロールバルブのゼロ点・スパン点の設定のみを行います. 手動によりゼロ点,スパン点をそれぞれ設定する 方法と,ゼロ点・スパン点の検出を自動で設定する方法があります.

手動設定;

MENU > Setup >Easy tuning > Position setup > 0%, 100% (2-2-3) 弁開度が 0%もしくは 100%になるように ① ① ボタンで値を動かして調整を行ってください.

自動設定;

MENU > Setup >Easy tuning > Position setup > Auto span (2-2-3)

4.4.3. レスポンスチューニング

制御動作の微調整を行う場合に使用します.

MENU > Setup >Easy tuning > Response tuning (2-2-4)

- A. 動作感度を上げたい場合(応答を速くして,応答時間を短くしたい場合)
 Aggressive を選択する.9 段階で感度が上がる(+1 → +9)
- B. 動作感度を下げたい場合(応答を遅くして、オーバーシュートを抑えたい場合)
 Stable を選択する. 9 段階で感度が下がる(-1 → -9)
- C. 元に戻す場合

Normal を選択する.

4.4.4. 固定絞り取り付け時の設定手順

以下の設定は取扱説明書【2.7. 固定絞りプレート(オプション)】を適用した場合の設定です.

- デッドバンドを 0.5%とする. ※必須ではありません.
 MENU > Setup > Detailed setup > Dead band (2-4-2)
 取説【4.7.詳細設定】参照
- フルオートチューンの実行
 MENU > Setup >Easy tuning > Full autotune (2-2-1)
 取説【4.4.1 フルオートチューニング】参照

ハンチングしてフルオートチューンが終了しない場合

- A. レスポンスチューニングを0 → -5 として再度実行してください.
 MENU > Setup >Easy tuning > Response tuning (2-2-4)
 取説【4.4.3 レスポンスチューニング】参照
- B. 選択されたランクを下げた後, Custom として再度実行してください.
 MENU > Setup >Expert tuning > PID parameter set (2-3-1)
 取説【4.5.1PID パラメータのプリセット設定】参照
 ※ハンチングによりフルオートチューンが終了しない場合でも、ゼロスパンの調整は完了しています.
- ステップ応答の確認 ※必須ではありません MENU > Diag & Alarms > Offline diag. set. > 25% step response (4-2-1) 取説【7.2.1 オフライン診断の概要】参照
- 4. 追加調整
 - オーバーシュートが出る場合は下記の調整を行ってください。
 - A. ゆっくりとオーバーシュートする場合(圧力変化が比較的遅い場合) 比例ゲインが小さいために発生していると考えられますので,ランクを上げるか, Response

tuningを+方向に設定してください.

B. すぐにオーバーシュートする場合(圧力変化が速い場合)
 比例ゲインが大きいために発生していると考えられますので、ランクを下げるか、Response tuning を – 方向に設定してください.

ランク変更後に再度フルオートチューンを実行すると元の不適だったランクのパラメータが選択されてしまい ます. これを避けるために、ランク変更後は、Customを選択してください. この操作により、PIDパラ メータは選択されたランクの値が設定されるようになります.

絞り部品適用によるランクの変化

絞り部品を適用することにより,ポジショナの給排気スピードが遅くなります.そのため,ポジショナはフル オートチューンの際の時間測定により,あたかもより大きな駆動部を制御していると自己認識します. そのため,通常選択されるランクよりも大きなランクの PID パラメータが選択されることになります. 下表にその目安を示します.

Time	EIQ 手卜立(7	選択されるランク		
туре	向ビ里リコロ	絞りあり	絞りなし	
	AT201	MまたはL	XS	
肖動,口	AT251	MまたはL	SS	
単動・ロークリー 	AT301	L	SS	
	AT351	LL	S	
	AT201	MまたはL	XS	
///□_//□_//□_/	AT251	L	SS	
	AT301	L	SS	
	AT351	LL	S	
単動・リニア	5221LA	LまたはLL	SS	
複動・リニア	6315LA	М	XS	

4.5. エキスパートチューニング

簡易チューニングでは所望の動きを得られない場合などに使用します.制御動作に必要なパラメータを個別に設定することにより、それぞれの駆動部に、より適したコントロールパラメータを設定するができます.

4.5.1. PID パラメータのプリセット設定

」注意

- ランクを 2 つ以上変更すると、予期せぬ動作(遅すぎる応答、早すぎる応答)になることがありますので、 事前のテスト動作を十分に行い、問題のないことを確認してください.
- 一般的に比例ゲインを小さくすると、動き出しに時間がかかるとともに目標開度への到達が遅くなります。 一方で比例ゲインを大きくすると不安定になりハンチングを引き起こします。

機器内部であらかじめ用意されている PID パラメータセットを設定することができます.

MENU > Setup >Expert tuning > PID parameter set (2-3-1)

比例ゲインの小さい順に, XS, SS, S, M, L, LL, XL と最大 7 ランクのパラメータがあらかじめ用意されていま す. 必要に応じてパラメータセットを選択してください. Custom でパラメータを決める際には, Custom を選択して ください.

動作感度を上げたいとき:より比例ゲインの高いパラメータセットを選択する 動作感度を下げたいとき:より比例ゲインの低いパラメータセットを選択する

ラン	5200LA	6300LA	6300RC	5300LA
ク				
XS	Ф218	Ф150	AT201U	-
SS	Ф270	Ф150	AT251U,AT301U	Ф270S
S	Φ270,Φ350	Φ200	AT351U,AT401U	Ф270S,Ф270L,Ф 350S
м	Φ350,Φ450S	Ф300	AT451U,AT501U	Ф350S,Ф350L,Ф 450S
L	Ф450S	Ф450	AT551U,AT601U	Ф450S,Ф450М,Ф 450L
LL	Ф450L	Ф450,Ф600S	AT651U,AT701U	Ф450M,Ф450L
XL	Ф650	Ф450L,Ф600	-	-

表 4.5.1a. ランクと各駆動部サイズの対応表(※)

※・・・移動ストローク,供給圧力などの違いは,適用するアクチュエータに対するパラメータの選択に影響を及ぼします.同じアクチュエータでセットアップを行った場合でも,希望の応答性を得るためにパラメータを変更する必要がある場合があります.

ラン	5200LA	6300LA	6300RC	5300LA
YS N		.		_
73		Φ200		
SS	Ф350	Ф300	AT401U,AT501U	Ф270L,Ф350S
S	Ф450S	Ф450	AT501U,AT551U	Ф350L,Ф450S
м	Ф450S,Ф450L	Ф450,Ф600S	AT601U,AT651U	Ф450М
L	Ф450L	Ф450L,Ф600	7328RB,AT701U	Φ450L
LL	Ф650S	Ф600	7337RB	-
XL	Ф650L	_	-	-

表 4.5.1b. ブースター設定時のランクと各駆動部サイズの対応表(※)

※・・・移動ストローク,供給圧力などの違いは,適用するアクチュエータに対するパラメータの選択に影響を及ぼしま す.同じアクチュエータでセットアップを行った場合でも,希望の応答性を得るためにパラメータを変更する必要がある 場合があります.

4.5.2. PID パラメータのカスタム設定

注意

各パラメータとも、値を大きく変更すると、予期せぬ動作(遅すぎる応答,早すぎる応答)になることがありますので、事前のテスト動作を十分に行い、問題のないことを確認してください。

一般的に比例ゲインを小さくすると、動き出しに時間がかかるとともに目標開度への到達が遅くなります。 一方で比例ゲインを大きくすると不安定になりハンチングを引き起こします。

下記に示した各 PID パラメータを個別に設定することができます.

MENU > Setup >Expert tuning > PID custom setup (2-3-2)

	表 4.5.2	カスタム設定可能な PID パラメー	.5
--	---------	--------------------	----

	種類	選択条件	説明	設定範囲
Р			比例ゲイン: e ≥b かつ出力圧 Po1 増のとき適用される	
D		AII-IN (出力圧増時)	微分ゲイン: e ≥b かつ出力圧 Po1 増のとき適用される	
I	外側		積分係数: e ≥bかつ出力圧 Po1 増のとき適用される	0.1 c .00.0
rP	パラメータ		比例ゲイン: e ≥b かつ出力圧 Po1 減のとき適用される	0.1~99.9
rD		AIr-OUT (出力圧減時)	微分ゲイン: e ≥b かつ出力圧 Po1 減のとき適用される	
rl			積分係数: e ≥bかつ出力圧 Po1 減のとき適用される	
			最大比例ゲイン:	
Inside P			e ≤b かつ出力圧 Po1 増のとき適用される	
	内側 パラメータ	Air-IN (出力圧増時)	偏差 e のとき,比例ゲインは下記が適用される P(e)=Inside P+(P-Inside P)*e/b	0.1~99.9
Inside D			最大微分ゲイン:	
inside D			e ≤b かつ出力圧 Po1 増のとき適用される	

		偏差 e のとき, 微分ゲインは下記が適用される D(e)=Inside D+(D-Inside D)*e/b	
Inside I			
		e ≤b かり出り圧 Po1 増のとき週用される	
		最大比例ゲイン:	
Inside rP		e ≤b かつ出力圧 Po1 減のとき適用される	
		偏差 e のとき,比例ゲインは下記が適用される	
		rP(e)=Inside rP+(rP-Inside rP)*e/b	
	Air-OUT	最大微分ゲイン:	
Inside rD	(出力圧減時)	e ≤b かつ出力圧 Po1 減のとき適用される	
monuero		偏差 e のとき, 微分ゲインは下記が適用される	
		rD(e)=Inside rD+(rD-Inside rD)*e/b	
Incido ri		積分係数:	
inside fi		e ≤b かつ出力圧 Po1 減のとき適用される	
		外側と内側のパラメータを切り替える偏差を設定します	
D		0を入力した場合は、外側のパラメータが有効となります	0~10%

※外側パラメータとは, 偏差 e の絶対値が b より大きいときに使用されるパラメータを意味します. ※内側パラメータとは, 偏差 e の絶対値が b 以下のときに使用されるパラメータを意味します.

b 点でのパラメータ切り替えのイメージを下図に示します.

図 4.5.2. ゲイン切り替え (例. 比例ゲインの場合)

手順を以下に示します.

① パラメータセットを Custom にする.

PID parameter set	231
☞ Custom	
Û	
PID parameter set	231
Complete	

② PID custom setup を選択します.

出力圧増加時と減少時のパラメータを同じにするか、しないかを選択する.

※Custom 以外のパラメータセットが設定された場合,③以降の操作で値の変更はできません.

Air-Out ≠ Air-In? ²³² No ☞Yes

③ Air-Inの PID パラメータを設定する.

④ Air-Outの PID パラメータを設定する.

PID custom setup 232	PID value Air-Out	232
Air-Out ≠ Air-In?	rP= 1.0	
PID value Air-Out	rI=30.0	
Inside threshold v	rD=20.0	

⑤ Inside threshold(b)を設定する.

PID custom setup ²³²		Inside threshold	232
Air-Out ≠ Air-In?			
PID value			
PID value Air-Out		=10.0%	
\blacksquare Inside threshold \checkmark	(\Box)		

⑥ Inside Air-In の PID パラメータを設定する.

PID custom setup 232	Inside PID AI	232
PID value Air-Out ▲ Inside threshold	Inside P= 1.0	
Inside PID AI	Inside I= 3.0	
Inside PID AO	Inside D=20.0	

⑦ Inside Air-Out の PID パラメータを設定する.

PID custom setup 232	Inside PID AO	232
PID value Air-Out ▲	Inside rP= 1.0	
Inside PID AI	Inside rI= 3.0	
☞ Inside PID AO	Inside rD=20.0	

⑧ 必要に応じて,設定値を保存する.

4.5.3. IP シグナルバイアスの設定

IP シグナルバイアスは,入力信号に対応した機器内部での制御出力信号(IP シグナル)を決定するために必要なパラメータになります. IP シグナルバイアス値のみを自動で決定する方法と,手動で入力する方法があります.

自動設定;

MENU > Setup > Expert tuning > Sensitivity setup (2-3-3)

- A. IP シグナルバイアス設定と PID パラメータの選定を行います. Sensitivity setup > Auto bias & size select (2-3-3-)
- B. IP シグナルバイアス設定のみを行います. Sensitivity setup > Auto bias (2-3-3-)

手動設定;

MENU > Setup > Expert tuning > Sensitivity setup > Manual Bias (2-3-3-) 弁開度 25%および 75%における IP シグナルバイアス値をそれぞれ入力します.

4.6. エラーメッセージ

フルオートチューン(4.4.1節), ポジションセットアップ自動設定(4.4.2節), IP シグナルバイアス自動設定(4.5.3節) の実行中に問題が生じた場合, 下記のエラーメッセージが表示され, 実行中断されます.

表 4.6 エラーメッセージ一覧

エラー		内容
	現象	弁開度 0%側に到達しない・整定しない
Error1	考えられる原因	駆動部オフバランス圧の不備
	対処法	オフバランス圧の確認
	現象	弁開度 100%側に到達しない・整定しない
Error2	考えられる原因	供給空気圧の低下・脈動
	対処法	供給空気圧の確認
	現象	目標とする開度(25%, 75%)に到達しない・整定しない
		・バルブのフリクションが大きくリミットサイクルが発生している
	老うらわス府田	・テンションスプリングの脱落や,ねじの緩みなど,機械的なガタによりリミットサイクルが発生し
	うんりれる床口	ている
Error3		・適切な PID パラメータが設定されていない
		▶ デッドバンドを設定する
	动机注	▶ 機械的なガタを取り除く
	XIXUX	▶ 適切な PID パラメータに変更した後、ポジションセットアップと IP シグナルバイアスの自動
		設定を行う
	現象	正常なスパンが得られてない(ストロークが小さすぎる)
Error5	考えられる原因	供給空気圧の低下・脈動
	対処法	供給空気圧の確認

※各エラーとも、5分経過でタイムアウトとし、エラーと判断します。

4.7. 詳細設定

所望の制御動作に応じて必要な項目を設定します.

MENU > Setup > Detailed setup (2-4-)

<u> 农 4.7 </u>

項目	説明	パラメータ	初期値
	入力信号に追従する制御範囲を設定します 0%:入力信号が設定値以下になると IP シグナルを 下側に振り切ります 0.1~50.0%の範囲で設定可能です		
カットオフ [Cutoff]	 100%:入力信号が設定値以上になると IP シグナル を上側に振り切ります 50.0~99.9%の範囲で設定可能です ※1・・・ 型番選定に従い,工場出荷時に設定されています 駆動部動作: Linear のとき 0%側 0.5%, 100%側 Disable 駆動部動作: Rotary のとき 0%側 0.5%, 100%側 99.5% 	数値/Disable	※1
	 ▲ 取扱上の注意 機械的にぶつかる位置を 0%や 100%として制御する場てください.また、ストッパーを用いる場合、機械的(0.5%程度プラス,100%側は 0.5%程度マイナスに設定す動作となります. 例)ストッパー位置が 30%の場合、30.5%に設定 	 合は, カットオフ設定 にぶつかる位置に対 することで最適な立ち	こを必ず使用し して, 0%側は 上がりと立下り
リミット [Limit]	本器が認識する入力信号の上下限を設定します 0%:入力信号の下限認識値を設定します 0.1~50.0%の範囲で設定可能です 100%:入力信号の上限認識値を設定します 50.0~99.9%の範囲で設定可能です ※上記カットオフとどちらかの設定となります		Disable
デッドバンド [Dead band]	デッドバンド 積分動作を無効にする偏差の値を設定します [Dead band]		Disable
出力特性変換 [Transfer function]	変換 nction]出力特性変換の種類を設定します 上inear:リニア特性 Equal percent Low:低イコールパーセント特性左記		Linear

項目	説明	パラメータ	初期値
	(レンジアビリティ 30)		
	Equal percent Mid:中イコールパーセント特性		
	(レンジアビリティ 50)		
	Equal percent Hig:高イコールパーセント特性		
	(レンジアビリティ 100)		
	Quick opening:クイックオープン特性		
	(レンジアビリティ 30)		
	Custom curve:自由設定特性		
	※Equal percent 特性において,30,50,100 以外のレ		
	ンジアビリティを使用する場合は, "レンジアビリティ"		
	において数値を直接入力してください.		
	任意の 19 点を用いて出力特性変換を設定します		
	※0%入力時は弁開度 0%, 100%入力時は弁開		
目田設定特性	度 100%が設定されていますので, その中間につい	粉店 (una carada	Unused
(出刀特性)	て設定してください	安X1但/Unused	
	※入力に対して弁開度は単調増加になるように設		
	定してください		
	イコールパーセント特性に対して, 任意のレンジアビリ		
	ティを設定します.		
レンジアビリティ	※流量特性変換でイコールパーセント特性が選択さ	数值	1
[Range ability]	れているときのみ設定可能となります		-
	※"1"のときは各イコールパーセント特性の値となりま		
	ব		
ユ カガンパー	入力信号にダンピングを設定します	数值/Unused	
	数値を小さくするほど,一次遅れフィルタの時定数が		Unused
	大きくなり応答を遅くすることができます	(0.1 55.576)	
	バルブ開度(%)に対して,入力信号 4-20mA を入力		
	し, スプリットレンジを設定します.		
	例1)4mAを0%,12mAを100%としたい時		
	0%= 4mA に設定		
スプリットレンジ [Split range]	100%=12mA に設定かつ, セットポイントを	0% /100%	0%=4mA
	Normal とする	0,0,200,0	100%=20mA
	例 2)4mAを 100%,12mAを 0%としたい時		
	0%= 4mA に設定		
	100%=12mA に設定かつ, セットポイントを		
	Reverse とする		
開度発信信号	言号 故障(Failure)時の開度発信のバーンアウト信号の方		
のバーンアウト方	向を設定します	Low/High	Low
向 Low 設定時:≦3.6mA の電流を流します			

KOSO ~ The Most Cost Effective, Creative Valve Solutions ~

項目	説明	パラメータ	初期値
[PT burnout dir.]	High 設定時:≧21mA の電流を流します ※入力信号がゼロのときは、上記設定にかかわら		
	ず, Low 設定の電流出力となります		
オートチューン スパン川ミット値	本器が自動的に 100%位置を検知する際, 検知位 置の実際の開度(オーバーストローク値)を設定しま す. ※駆動部動作でリニア選択時にのみ有効となりま す.	数値 (100~150%)	105%
[AT span limit]	▲ 取扱上の注意 オーバーストローク値を 100%とする場合, Cutoff100 い. 駆動部に応じた値にすることで次回以降のスパン調整の	%側の設定を必ず有 D手間を省くことができ	i効にしてくださ きます.
積分停止圧力 [Integ. stop press.]	 分停止圧力 はeg. stop press.] 分による修正動作を停止します. 女値/Unused (0~999kPa)		

4.8. 各機能の設定

個別機能を設定します.

MENU > Setup > Function select (2-5-)

表 4.8	機能設定項目
-------	--------

項目	説明	パラメータ	初期値
操作権限 [Authority] ※Model KGP5003 のみ	 操作権限を設定します. HART 通信のみで使うなど,LUI から設定変更をさせない場合には,HARTを選択してください. HARTを選択した場合,LUI からアクセスできるのは,TOPメニューのうち,Informationのみとなります. ※設定を HART からLUI に戻す場合,下記の特殊操作が必要となります. 下記画面において, MENU > Information > Monitor > Status ①、 ボタンを4秒同時押し Yes/Noが表示されるので,Yesを選択する HART からLUI への権限切り替え完了 	LCD / HART	LCD
パスワード設定 [Password setup]	パスワードを設定します パスワードを選択した場合,パスワード入力無しでアクセ	3 桁整数	Unused

	スできるのは、TOPメニューのうち、Informationのみとなり		
	<u>ます.</u>		
	パスワードを忘れた場合は、本書書面裏の営業所までお		
	問い合わせください.		
スクリーンセーバ	LCD 画面表示をオフにする時間を設定します		
_	オフにすることで有寿命部品である LCD の寿命を延ばすこ	数值/ Unused	Unused
[Screen saver]	とができます		
温度単位	LCD に表示される温度の単位を設定します	ᢟ᠂᠃ᢩ	Ŷ
[Temperature unit]		C / F	C
圧力単位	LCD に表示される圧力の単位を設定します kPa/bar/psi		
[Pressure unit]		Ki d/ bdi/ p3i	
	LCD のトップ画面に表示される弁開度の表示方法を変更		
開度表示モードします		Normal /	Normal
[Posi. disp. mode]	sp. mode] Normal: 弁開度を小数点以下1桁で表示します Simple Simple		Normal
	Simple:弁開度を整数で表示します		

※・・・型番選定に従い、工場出荷時に設定されています.

4.9. メモリ操作

4.9.1. メモリ保存

設定値は自動的には保存されませんので、以下のどちらかの方法で保存を行ってください。

A. LCD メニューから保存を行う場合

MENU > Maintenance > Memory save & res. (3-3-)

手順を以下に示します.

- ① Memory save & Res を選択し, ジボタンを押す. 3--Maintenance Calibration Simulation Test ☞ Memory save & Res Service Save を選択し、 ジボタンを押す. 33-Save & Restore Save 🖝 Restore Factory default ③ Yes を選択し, ジボタンを押す. 331 Save • Yes No
- ④ 下記が表示され、②の画面に戻ったら完了です.

Save	331
Complete	

B. 各操作後に行う場合

各操作後に、 (マ)ボタンで戻ると、メニュートップ画面の手前で下記画面が表示されます. 画面に従って、保存作業を実施してください.

Save	
• Yes	
No	

4.9.2. 設定データの復元

4.9.1 と同様に, Restore を選択して作業を行ってください.

現在の設定値を保存済みのデータで復元します. ※ 保存される前の一時的な設定変更内容は失われます.

4.9.3. 工場出荷データに初期化

4.9.1 と同様に, Factory default を選択して作業を行ってください. 工場出荷設定値で設定を初期化します.

4.10. インフォメーション

4.10.1.ステータス状況の表示

本器のステータスを確認することができます.

MENU > Information > Monitor >Status (1-1-1)

Status	No alarm ¹¹¹	Status	:アラーム有無の表示
LCD/HART	LCD	LCD/HART	:操作権限の表示 LCD/HART
MODE	4_20	MODE	:権限が LUI 時のモード表示
HART	4 20	HART	:権限が HART 時のモード表示

4.10.2.運転状況の表示

本器への入力電流, セットポイント, 弁開度, IP シグナルの値を確認することができます. MENU > Information > Monitor > Input / posi etc (1-1-2)

Signal	4 0ma ¹¹²	Signal	:入力電流
Set point	0.0%	Set point	: セットポイント
Valve pos		Valve pos.	: 弁開度
IP signal	25.0%	IP signal	: IP シグナル電流

圧力値を確認することができます.

MENU > Information > Monitor > Pressure (1-1-3)

_	113		
Pressure		Supply	:供給空気圧
Supply	400kPa	Pout1	• 出力空气压 1
Poutl	300kPa	FOULI	
Pout2	300kPa	Pout2	:出力空気圧 2

本器内部の温度値を確認することができます. MENU > Information > Monitor > Temperature (1-1-4)

Temperature 114 +22°C

4.10.3. 本器内部情報の表示

以下の情報を確認することができます.

- > シリアルナンバー ※
- ▶ 各バージョン(本体,電子基板,ソフトウェア)
- ▶ HART バージョン ※
- ➤ TAG 番号 ※
- ※ Model KGP5003 のみ

MENU > Information > Positioner info. (1-3-)

4.10.4.設定情報の表示

以下の情報を確認することができます.

- ▶ 駆動部動作および駆動部タイプ
- ▶ バルブ動作方向
- ▶ パッキンタイプ
- > ブースターリレーオプション
- ▶ セットポイントの方向
- 開度発信信号の方向
- > 開度発信信号のバーンアウト方向
- PID パラメータセット

MENU > Information > Config. parameter (1-4-)

- ▶ カットオフ/リミット設定値
- デッドバンド
- ▶ 出力特性変換
- ▶ 入力ダンパー
- レンジアビリティ
- > スプリットレンジ
- ▶ 積分停止圧力

4.11. 運転前の確認

▶ 電源投入直後は、応答が遅くなることがありますので、電源投入後は 3.8mADC 以上を印加してください。

本器を運転する前に1.4. 節の仕様をご確認の上,以下の動作確認を実施してください.

- > 入力信号に 4-20mADC が印加されていることを確認してください.
- > 空気配管に適切な供給空気圧力が供給されていて空気漏れが無いことを確認してください.
- > フィードバックレバーおよび、ピンに破損や損傷がないことを確認してください.
- > 必要に応じた入力信号による動作確認を事前に十分に実施してください.

5. メンテナンス

- 排気口の詰まりなどの影響により、フロントカバーに大きな圧力がかかり、外そうとしたときにカバーが吹き飛ぶなど危険なことがあります。ハウジングの排気口がきちんと開いていることを確認してください。
- > メンテナンス作業時には、保護具、保護手袋、保護メガネ等を常に着用してください。

注意

パイロットリレー, A/M ユニットの飛び出し防止ねじは外さないでください.

5.1. 調整・切り替え

5.1.1. オート・マニュアルモード切り替え

オートマニュアル操作を行う時は、電源をオフにするか、もしくはカットオフが有効になる入力信号にしてください。入力信号を受けた状態でこの作業を実施すると、本器は入力信号と弁開度の偏差をなくすよう制御を行うため、積分操作量が増加します。これによりオートモードに戻した時に、蓄積した積分操作量の影響で弁開度が所定の位置に戻るまでに時間を要すことになります。

本器には、入力信号に応じた弁開度に設定するための出力空気圧を自動で設定する通常のオートモードの他、 出力空気圧を外部に設置した減圧弁などにより手動で設定することができるマニュアルモードがあります.

マニュアルモードは、A/M(Auto/Manual)ユニットに内蔵した切り替えねじを操作することにより、メカニカルな 動作で切り替えを行います.

オートモード時 ; トルクモータで生成されたノズル背圧信号に応じた出力空気圧を 出力します.

マニュアルモード時;ノズル背圧はバイパスされ,供給空気圧と同じ出力空気圧を 出力します.

この機能を使うことにより、本器に接続された駆動部を出力空気圧に応じた弁開度に 手動で操作することができます.ただし、複動形駆動部の場合は、全閉または全開 の操作となります.

図 5.1.1. A/M ユニット

5.1.2. トルクモータの調整

トルクモータユニットのノズルフラッパギャップ(空隙)を調整します. 手順を以下に示します.

① 下記に従い, 画面表示を行う.

MENU >Information >Monitor >Input/posi etc (1-1-2)

Signal	8.0mA ¹¹²
Set point	25.0%
Valve pos.	25.0%
IP signal	43.0%

② 弁開度 50%となる入力信号とする.

Signal	12.0mA ¹¹³
Set point	50.0%
Valve pos.	50.0%
IP signal	45.0%

③ トルクモータユニットのノズルを時計方向または反時計方向に回し, IP signal が 50±2%となるように調整し, 完了です.

Signal	12.0mA ¹¹²
Set point	50.0%
Valve pos.	50.0%
IP signal	50.0%

5.1.3. パイロットリレー動作の切り替え

切り替えねじにより、単動/複動動作を切り替えることができます.

図 5.1.3. パイロットリレーの動作切り替え

単動動作への切り替え;

切り替えねじを時計回りに止まるまで回してください.

複動動作への切り替え;

切り替えねじを反時計回りに止まるまで(飛び出し防止ねじにぶつかるまで)回してください. この時点でバランス圧は供給空気圧となりますので,その後,次節「バランス圧の調整」を行ってください.

5.1.4. パイロットリレーのバランス圧調整

複動動作で使用する際の,出力圧1と2のバランス圧力を切り替えねじを回すことにより調整します.反時計回りで圧力増加方向,時計回りで圧力減少方向となります.バランス圧力は供給空気圧の70-80%に調整してください.

下記のメニューにより、出力圧1と2の値を確認しながら調整することができます. なお、駆動部が大きくなるほど、圧力が整定するのに時間がかかります.

MENU > Maintenance > Calibration > Pilot relay adju. (3-1-5)

下図に調整時の画面を示します. それぞれの値は下記を表します.

Pilot relay	adju. ³¹⁵
balance air	AAAA-BBBBB
Pout1:	CCCCkPa
Pout2:	DDDDkPa

AAAA: バランス圧調整の下限値(供給空気圧の 70%) BBBB: バランス圧調整の上限値(供給空気圧の 80%) CCCC: Pout1(出力圧 1)の現在値 DDDD: Pout2(出力圧 2)の現在値

5.2. キャリブレーション

本節に示す作業は、工場出荷時にはすでに実施されていますので基本的には不要となります.しかしながら、 長期間の使用などにおいて、ずれが生じる場合がありますので必要に応じて本作業を実施してください.

5.2.1. 設定値の保存

キャリブレーションの結果は自動的には保存されませんので、4.9 節メモリ操作に従って、メモリ保存を実施してください。

5.2.2. 入力信号のキャリブレーション

本器が認識する入力信号の値を校正します.

```
MENU > Maintenance > Calibration > Input signal cal. (3-1-1)
```

4mAと20mAの校正手順を下記に示します.

4mA の校正;

- た表示において、4mAの入力信号を印加してください.
 ※xxxx は本器が認識している A/D 値になります.
- ② ジボタンを押してください.

20mA の校正;

- ③ 左表示において、20mA の入力信号を印加してください.
 ※yyyy は本器が認識している A/D 値になります.
- ④ ジボタンを押してください.
- ⑤ 左が表示されます.

⑥ 左画面に切り替わったら完了です.

5.2.3. クロスポイントのキャリブレーション

Note

本器内蔵のポテンショメータによっては、クロスポイントのキャリブレーションでは十分な精度が得られない場合があります. その場合は、5.5.3.節に示すクロスポイントの調整を実施してください.

本器に対して、フィードバックレバーが水平になる位置を校正します. 位置を高精度に制御するために必要な 作業となります. 主に、本器が、50%開度においてフィードバックレバー水平とならない位置に取り付けられて いる場合に行う作業となります.

MENU > Maintenance > Calibration >Cross point cal. (3-1-2)

手順を以下に示します.

① Cross point cal.を選択する.

② 下記画面が表示されるので、 ③ ③ ボタンを押して、フィードバックレバーが水平になる位置にする.

sp:弁開度の目標値を表示します.

③ 水平位置になったら、 ジボタンを押し、下記が表示され、 ①の画面に戻ったら完了です.

Please set	the	312
Complete		

5.2.4. 開度発信信号のキャリブレーション

本器が出力する開度発信信号を校正します. ※Model KGP5003のみ.

MENU > Maintenance > Calibration > Position transmit cal. (3-1-3)

0%と100%の開度発信出力信号の校正手順を下記に示します.

Please adjust the output signal 0% -> xxxx ↓	13 1 2 2	カの校正; 左表示において,LUIの①①ボタンで出力信号が0% 相当になるように調整してください. ※xxxx は本器が認識している A/D 値になります. ②ボタンを押してください.
	100%	出力の校正;
the output signal	3	左表示において, LUIの ① ① ボタンで出力信号が
0% -> xxxx		100%相当になるように調整してください.
100% -> yyyy		※yyyy は本器が認識している A/D 値になります.
$\hat{\Gamma}$	4	☺️ボタンを押してください.
Please adjust	5	左が表示されます.
Complete		
$\hat{\Gamma}$		
Calibration Input signal cal. Cross point cal. Position transmit Pressure sensor	6	左画面に切り替わったら完了です.
5.2.5. 圧力センサのキャリブレーション

本器に内蔵された3つの圧力センサの校正を行います.本器の圧力センサはゲージ圧タイプなので,圧力の基準となるゲージ圧力測定機器を接続して校正を行ってください.圧力の校正においては,1次圧(1st-P)と2次圧(2nd-P)をそれぞれ設定する必要があります.

MENU > Maintenance > Calibration > Pressure sensor (3-1-4)

供給圧力用センサの校正手順を以下に示します.

 左表示において、Supplyを選択し、 ジボタンを押してく ださい.

1次圧の校正;

- ③ ジボタンを押してください.

2 次圧の校正;

④ 左表示において, BBB が印加圧力になるように LUI の
 ④ ① ボタンで設定してください(BBB は主に供給空気
 圧)

※yyy は本器が認識している A/D 値になります.

- ⑤ (シ)ボタンを押してください.
- ⑥ 左が表示されます.

⑦ 左画面に切り替わったら完了です.

出力圧1用センサの校正手順を以下に示します.

① 左表示において, Pout1を選択し, 💬を押してください.

1次圧の校正;

- 左表示において、AAA が印加圧力になるように LUI の
 ボタンで設定してください(AAA は主に大気圧)
 ※xxx は本器が認識している A/D 値になります.
- ③ ジボタンを押してください.

2次圧の校正;

④ 左表示において, BBB が印加圧力になるように LUI の
 ④ ① ① ボタンで設定してください(BBB は主に供給空気
 圧)

※yyy は本器が認識している A/D 値になります.

- ⑤ ジボタンを押してください.
- ⑥ 左が表示されます.

⑦ 左画面に切り替わったら完了です.

Pout2 についても同様の手順で校正を行ってください.

【簡易的な圧力センサ校正の方法】

供給空気圧の正しい値が分かっている場合,下記の手順により,圧力測定機器を使用せずに比較的簡単に 校正を行うことができます. LCD の画面表示は,前節を参照してください.

供給圧用センサの校正時;

- 1. 1次圧設定時には、本器への供給空気圧を遮断し、ゼロとします.
- 2. 2次圧設定時には、本器へ供給空気圧を印加します.

出力圧1用センサの校正時;

- 1. 1次圧設定時には、本器への供給空気圧を遮断し、ゼロとします.
- 2. 2次圧設定時には、A/M ユニットによりマニュアルモードとし、供給空気圧を印加します.

出力圧 2 用センサの校正時;

- 1. 1次圧設定時には、本器への供給空気圧を遮断し、ゼロとします.
- 2 次圧設定時には、IP シグナル電流がゼロとなる入力信号(セットポイント方向が Normal の場合は 4mA)を印加することにより、供給空気圧を印加します。※パイロットリレーが複動仕様となっている 必要があります。

5.2.6. ポテンショメータのキャリブレーション

本器に内蔵されたポテンショメータの校正を行います. 出荷時に設定されていますので通常は必要ありません.

本器を駆動部から取り外すなどして、フィードバックレバーが 360°回せる状態にしてから行ってください.

MENU > Maintenance > Calibration > Posi. sensor cal. (3-1-6)

Posi.	Sensor	cal. 316	Now:センサ出力の現在値
Now	S=xxxx	С=уууу	Max:センサ出力最大値
Max	S=AAAA	C=BBBB	Min:センサ出力最小値
Min	S=DDDD	C=EEEE	S:sin波の値, C:cos波の値

- ① 上の表示において、ポテンショメータの軸をゆっくりと2回転させてください(回転方向は問わない).
- ② ジボタンを押して設定値を保存し完了です.

5.3. シミュレーションテスト

入力信号, IP シグナル電流, 開度発信信号を疑似的に発生させることができます. また, ランプ入力やステップ入力を疑似的に発生させることにより, 動作チェックを簡単に行うことが可能です.

5.3.1. 入力信号シミュレーション

疑似的に設定した入力信号により、コントロールバルブを動作させることができます.

表示された値を連続的に認識させるマニュアル入力モードと、LCD 画面で設定した値を後から認識させるプリセット入力の2つの方法があります. ランプ入力などの動作をさせる場合にはマニュアル入力モードが、ステップ入力などの動作をさせる場合にはプリセット入力が適しています.

MENU > Maintenance > Simulation test > Manual input (3-2-1)

Preset input 322	② 左表示において, ①①①ボタンで value を設定してください.
value position	③ ジボタンを押してください.
= 50.0% -> 49.7%	設定した value 値に応じて,ステップ応答動作をさせることができ

ます.

5.3.2. IP シグナルシミュレーション

本器トルクモータを駆動するためのコイルに疑似的に設定した IP シグナル電流を流し, コントロールバルブを動作 させることができます.

MENU > Maintenance > Simulation test > IP signal (3-2-3)

手順を以下に示します.

① 温度補正の有無を選択する. 通常, YES のままとなります.

② 任意の IP シグナルを入力する.温度補正に使用される現在の温度値が同時に表示されます.

補足)

※ ジボタンにより 50%刻みで値を変更することができます.

ΙP	signal	323
	= 50.0%	-> +26℃

※ ①ボタン, ①ボタンにより, 0.1%刻みで値を変更することができます.

IP	si	gnal		323
	=	0.1%	-> +26°	С

5.3.3. 開度発信信号シミュレーション

疑似的に設定した開度発信信号を出力することができます. ※Model KGP5003のみ

MENU > Maintenance > Simulation test > Position transmit (3-2-4)

※ ①ボタン, ②ボタンにより, 0.1%刻みで値を変更することができます. ボタンを長押しすることにより連続 して値を変更することができます.

※値は下記のように変化します.

0%→ 設定値 → 100% → バーンアウトHi → バーンアウトLo → (0%)

5.3.4. ランプ応答シミュレーション

疑似的に設定したランプ入力により,コントロールバルブを動作させることができます. MENU > Maintenance > Simulation test > Ramp response test (3-2-5)

設定パラメータ	説明	
Start	ランプ応答を開始する開度を設定します	[%]
End	ランプ応答を折り返す開度を設定します	[%]
Ramp time	ランプ応答させる時間(片道)を設定します	[s]
Wait time	ランプ応答を開始するまでの待ち時間を設定します	[s]
Repeat	ランプ応答の動作種類を設定します	Once/Repeat

手順を以下に示します.

① 開始位置(Start)を設定する.

Ramp	resp	test	32
St	art=	0%	

② 折り返し位置(End)を設定する.

```
Ramp resp test 325
End= 100%
```

③ Ramp time (Start から End に動かす時間)を設定する.

Ramp	res	sp.	test	33
Ra	amp	tir	ne=	0sec

④ Wait time を設定する.

Ramp	res	sp.	tes	t	32
Wa	ait	tin	ne=	10se	с

⑤ Repeat を設定する.

Ramp	resp.	test	32
Re	epeat=	Once	

⑥ 実行の可否を選択する.

⑦ Yesを選択すると、シミュレーション動作テストが開始します. (空)ボタンを押すとテストが強制終了します.

5.3.5. ステップ応答シミュレーション

疑似的に設定したステップ入力により、コントロールバルブを動作させることができます. MENU > Maintenance > Simulation test > Step response test (3-2-6)

設定パラメータ	説明	
Step	ステップ応答のステップ幅を設定します	[%]
Start	ステップ応答を開始する開度を設定します	[%]
End	ステップ応答を折り返す開度を設定します	[%]
Step time	1 ステップの待機時間を設定します	[s]
Repeat	ステップ応答の動作種類を設定します	Once/Repeat

手順を以下に示します.

① Step を設定する.

Step resp. test Step= 10.0%

326

② Start を設定する.

Step resp. test 326 Start= 0%

③ End を設定する.

④ Step time を設定する.

⑤ Repeat を設定する.

⑥ 実行の有無を選択する.

Step	resp.	test	326
Yes	5		
r►No			

5.4. ユニットの清掃・交換

5.4.1. 固定絞りの清掃

固定絞り付近に堆積した塵などを取り除きます.

固定絞りが詰まると、トルクモータで生成されるノズル背圧の流量が不足するため、パイロットリレーや駆動部の 動作遅延などにつながります.

清掃手順)

- 1. 本器への供給空気圧を遮断してください.
- 2. フロントカバーを外し, A/M ユニットを取り外してください.
- 3. 固定絞り部に, ワイヤ(Ф0.28以下)を通して, 堆積した 塵などを取り除いてください.
- 4. 2の逆の手順を行い, 完了です.

図 5.4.1 固定絞り部

5.4.2. 金網フィルタの清掃

A/M ユニット下部に設置された金網フィルタに堆積した塵などを取り除きます.

Note

金網フィルタは変形しやすいので取扱には十分注意してください.また,フィルタを所定の位置に設置するためには,本器を駆動部から取り外し,天面を向けた状態で作業を行ってください.

清掃手順)

- 1. 本器への供給空気圧を遮断してください.
- 2. フロントカバーを外し, A/M ユニットを取り外してください.
- 3. ベース部の O リングを外し,フィルタを取り外してください.
- 4. フィルタに堆積した塵などを取り除いて下さい.
- 5. フィルタおよび O リングを, 位置に注意して元に戻してください(図 5.4.2 参照) フィルタが O リングのシール面に乗り上げないように注意してください.
- 6. 2 の逆の手順を行い, 完了です.

5.4.3. ノズルフラッパの清掃

ノズルフラッパ付近に堆積した塵などを取り除きます.

ノズルフラッパ付近にゴミなどが堆積すると、トルクモータで生成されるノズル背圧において十分な圧力変化が得られず、パイロットリレーからの出力圧が不足するなど、駆動部の動作に悪影響を及ぼします.

清掃手順)

- 1. 本器への供給空気圧を遮断してください.
- 2. フロントカバーを外してください.
- 3. ノズルとフラッパ間に、紙(名刺程度の厚み)を差し込み、数回出し入れを繰り返します.
- 4. 清掃終了後, 5.1.2.節に従って IP シグナルを確認してください. 必要に応じて, トルクモータ調整および IP シグナルバイアスの設定を行ってください.
- 5. フロントカバーを取り付けて終了です.

図 5.4.3 ノズルフラッパ部

5.4.4. パイロットリレー絞りの清掃

パイロットリレー絞り付近に堆積した塵などを取り除きます.

パイロットリレー組立に2種類の絞りがあります.

トルクモータの調整を行っても IP シグナルの調整が上手くいかない場合などは, 絞りの掃除を行ってください. 絞りの径はФ0.3とФ0.34 なので, それ以下のピアノ線等が適しています.

清掃手順)

- 1. 本器への供給空気圧を遮断してください.
- 2. フロントカバーを外し、パイロットリレーを取り外してください.
- 3. 2 種類の絞り部にワイヤ(Φ0.3 とΦ0.34 以下)を通して、堆積した塵などを取り除いてください.
- 4. 2の逆の手順を行い, 完了です.

5.5. サービスメニュー

5.5.1. **内部変数の確認**

下記メニューから, A/D 変換値, ポテンショメータ角度値, クロスポイント設定値, ソフトウェアのタイムスタンプ, PID 操作量を確認することができます.

MENU > Maintenance > Service (3-4-)

5.5.2. 工場出荷メニューの切り替え

出荷時に適切なパラメータが設定されていますので,通常はこちらのメニュー切り替えおよびメニュー内の設定変更は実施しないでください.変更すると所望の動作が得られない場合があります.

MENU > Maintenance > Service > Factory menu (3-4-6)

5.5.3. クロスポイントの調整

Note

5.2.3.節のクロスポイントのキャリブレーションを行っても所望の精度が得られない場合,本節の調整を実施してください.

MENU > Maintenance > Service > Adjust cross pnt. (3-4-7)

手順を以下に示します.

- ① 本器へ, 弁開度 50%に相当する入力信号(通常は 12mA)を入力してください.
- ② 実開度が, 50%になるように, ①ボタン, ②ボタンにより, cross p.を変更してください.

Adjust cro	ss pnt. 3
positio	n 50.0%
cross p	. +2.3456°

③ ジボタンを押して設定値を保存し完了です.

5.5.4. Factory Setup

Factory Setup はメーカが行う調整・設定用のメニューです. ※通常は設定を変更しないでください.

5.5.4.1. Factory Setup の概要

下表に Factory Setup の概要を示します.

項目	Factory Setup の概要
	IP シグナルの出力範囲を制限する設定です.
IP シグナル	(※通常は, 設定を変更しないでください)
レンジ	設定値;
[IP signal range]	Air-In [%]:出力圧増時の,IP シグナルの出力範囲を設定します.
	Air-Out [%]:出力圧減時の, IP シグナルの出力範囲を設定します.
	IP シグナルの出力係数の設定です.
IP シクナル 仮物	(※通常は,設定を変更しないでください)
1赤安X [IP signal factor]	設定値 ;
	IP signal factor [-]:IP シグナルの出力係数(倍率)を設定します
	ポジショナー内部のメーカ設定のスイッチです.
仮想設定	(※通常は, 設定を変更しないでください)
スイッチ	設定値;
[Virtual DIP SW]	SW1:設定1~8
	SW2:設定9~16
	カットオフ時に出力する, IP シグナルの設定です.
カットオフ	(※通常は,設定を変更しないでください)
IP シグナル	設定値;
[Cutoff IP signal]	0% side [%]:0% 側カットオフ時の IP シグナルを設定します.
	100% side [%]:100% 側カットオフ時の IP シグナルを設定します.
	IP シグナルのずれを検出し補正を行う基準値の設定です.
	(※通常は, 設定を変更しないでください)
TD 佢兰诺正	設定値;
IP 1備左備正	Disable / Enable : IP 偏差補正機能の無効/有効を設定します.
[in concetton]	Enableの場合,
	IP deviation:IP 補正を行う判定条件として IP 偏差のしきい値を設定します.
	Time: IP補正を行う判定条件としてIP偏差しきい値以上の連続検出時間を設定します.

表 5.5.4.1 Factory Setup

5.5.4.2. Factory Setup の表示

Factory Setup メニューを表示にするには、以下の設定を行います.

Factory Menu;

MENU > Maintenance > Service >	> Factory Menu > (3-4-6)
Factory menu 346	① ON を選択し, ジボタンを押してください.
OFF ☞ ON	② <i>MENU > Maintenance</i> に Factory Setup メニューが表示されます

6. アラーム

本器は自己診断機能によりアラームを発報する機能を持っています。

弁開度, 偏差, 温度, 圧力に関して, アラーム条件を任意に設定することができます. また, それぞれのアラ ームに対して, NAMUR107 で定義されたステータス分類を割り当て, シンボルマークを LCD に表示させることが できます.

なお、メモリや各センサ類の重度の故障(Failure)を検知したときは、IP シグナルを強制的に遮断し、フェールセーフ方向に動作します.また、開度発信はバーンアウト信号を出力します.

Note

故障(Failure)により、IP シグナルが強制的に遮断した場合,復帰するにはアラームの原因が取り除かれるととも にアラームを解除する必要があります.

NAMUR107 で定義されているステータスの概要を下表に示します.

表 6. NAMUR ステータス

シンボル マーク	ステータス分類	概要と対処例	ソフト対応処理
	Maintenance required	機器の劣化・摩耗などが原因の 問題が発生 対処例)機器の調整, 部品交 換など	アラーム表示のみ
V	Check function	機器の設定・調整が原因の問題 が発生 対処例)機器の設定確認,調 整など	アラーム表示のみ

<u>^</u>	Out of specification	機器が使われる環境などが原因 の問題が発生 対処例) 環境要因の除去など	アラーム表示のみ
(\mathbf{X})	Failure	機器内部が原因の問題が発生 対処例)本体・部品交換など	IP シグナルを強制的に遮断し (フェールセーフ方向に) 開度発信はバーンアウト出力

6.1. アラームの概要

<u>設定変更できないアラーム;</u>

主に機器内部の故障に起因するアラームを下表に示します.

表 6-1a. 故障によるアラーム(設定変更不可)

項目	アラームの概要	対処方法
メモリ故障	EEPROM メモリの故障	本器の交換,または
ポテンショメータ故障	角度センサの故障	弊社までご連絡ください

これらのアラームが発報された場合, NAMUR ステータスにおける Failure が LCD に表示されます.

入力信号のアラームを下表に示します.

表 6-1b.	アラーム	(設定変更不可)
---------	------	----------

を検出することがで
<u> </u>

設定変更可能なアラーム;

本器や本器が取り付けられた制御システムにおいて,動作異常などにつながる恐れのある現象に関するアラームを下表に示します. これらのアラームは,ユーザーの使用条件に応じてアラーム発報のしきい値を設定することができ,また NAMUR107 に準拠したシンボルマークを割り当てて LCD に表示させることができます.

項目	アラームの概要	使用目的
開度アラーム	弁開度が設定した上下限しきい値を超えたと	バルブ本体の摩耗・損傷などによるゼロ・ス
[Position alarm]	き, アラームを出します	パン点ずれを検出することができます.

	設定値;0%側しきい値[%],100%側しきい値[%], 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、		
	初期ステータス分類;Check function		
	偏差が設定したしきい値を一定時間超えたと	バルブや取動部の因差 配管からの空気	
	備定が設定したしてい にで 足時間 超えたこ き、アラー / を出します	漏れなどの異常を検出することができます	
偏差アラーム		時間[s]	
[Deviation alarm]	初期ステータス分類; Check function		
	※ 偏差しきい値はカットオフ量よりも大きな値を調	安定してください.	
	温度が設定した上下限しきい値を超えたとき,	部品の早期劣化につながる仕様範囲外の	
泪皮 7二 /	アラームを出します	温度での使用を検出することができます	
)画度アラーム [Temperature alarm]	設定値;低温側しきい値[°C,°F], 高温側しきし	,\値[°C,°F] 入	
	初期ステータス分類:Out of specification	/?∖	
	供給空気圧か設定したしさい個を超えたとさ,	駆動部タイアノフムの破損なとにつなかる高	
		供給空気圧の検出をすることかできます	
高供給圧アラーム	設定値;圧力しきい値[kPa,bar,psi]		
[High sup-pressure]	初期ステータス分類: Out of specification		
		2	
		供給圧不足による駆動部の出力異党を	
	に、「「「「「「」」」、「「」」」、「「」」、「」」、「」」、「」」、「」」、「	はいたいでであるが、こののログス市で	
准件公正之二 /	27777 A CELLOG 7 設定値・圧力しまい値[kPa bar psi]		
低1共結圧アフーム [low sup-pressure]	初期ステータス分類: Out of specification	/2	
[Low sup-pressure]		<u> </u>	
(日カヤン)#故暗	圧力センサの AD 値がしきい値を超えたとき,	圧力センサの異常を検出することができま	
	アラームを出します.	す.	
アラーム	設定値 ; Disable / Enable ※しきい値変更は不可		
[Pressure failure]	初期ステータス分類: Failure		
	※ Failure の状態のまま,設定を無効にするには,一旦入力信号を切ってくだ		
	さい(電源の再投入)		

表 6.1d. アラーム設定項目

項目	説明	パラメータ	初期値
開度アラーム [Position alarm]	 弁開度アラームを出す上下限しきい値を設定します 0%: 弁開度が設定値より小さくなると開度アラームを 出します -25% ~ 50%の範囲で設定可能です 100%: 弁開度が設定値より大きくなると開度アラーム を出します 	数値/Unused	0%側 Unused, 100%側 Unused

	50%~125%の範囲で設定可能です		
偏差アラーム [Deviation alarm]	 偏差アラームを出すしきい値と判定時間を設定します Deviation:偏差しきい値(※) 1~100%の範囲で設定可能です Time:偏差発生判定時間 1~999secの範囲で設定可能です ※ 偏差しきい値はカットオフ量よりも大きな値を設定してく ださい. 	数値/Unused (1~100%)	Unused
温度アラーム [Temperature alarm]	温度アラームを出す上下限しきい値を設定します Low:温度が設定値よりも低くなったとき、アラームを 出します -45 ~ +25℃の範囲で設定可能です High:温度が設定値よりも高くなったとき、アラームを 出します +25 ~+85℃の範囲で設定可能です	数値/ Unused	Low 側 Unused, High 側 Unused
高供給圧アラーム [High sup-pressure]	高供給圧アラームを出すしきい値を設定します 供給圧力が設定したしきい値を上回ったとき, アラームを 出します	Unused/数値 (0~999kPa)	Unused
低供給圧アラーム [Low sup-pressure]	低供給圧アラームを出すしきい値を設定します 供給空気圧が設定したしきい値を下回ったとき, アラームを 出します	Unused/数値 (0~999kPa)	Unused
圧カセンサ故障 アラーム [Pressure failure]	圧力センサ故障アラームの無効/有効を設定します ※しきい値変更は不可	Disable/Enable	Disable

6.2. アラームの設定 / 結果の確認・解除

各アラームの設定,結果の確認および解除は下記メニューから操作することが可能です.

6.2.1. 開度アラーム

設定; MENU > Diag. & Alarms > Alarm setup (4-4-)

① Position alarm を ① ① ボタンで選択し, ② ボタンを押します.

0% side の数値(任意)を① ① ボタンで決定します.

Position alarm 441 0% side= 5.0%

③ 100% side の数値(任意)を① ① ボタンで決定します.

Position alarm 441 0% side= 5.0% 100% side= 95.0%

④ Ent ボタン 🖙 を押して下記が表示されたら完了です.

Position alarm 441

Complete

結果の確認;

MENU > Information > Alarm status (1-2-)

① Position alarm を選択し、 (ニシボタンを押します.

Alarm status ¹²⁻ ■Position alarm Deviation alarm Temperature alarm S-pressure alarm

② 下記画面より Lo alarm と Hi alarm の表示を確認します.

Posit	tion al	arm	1	12]
Pos	sition		50.	0%	
Lo	alarm	5.	0%	OK	
Hi	alarm	95.	0%	OK	

6.2.2. 偏差アラーム

```
設定;
MENU > Diag. & Alarms > Alarm setup (4-4-)
```

① Deviation alarm を ① ① ボタンで選択し, □ ボタンを押します.

Alarm setup 44-Position alarm ■Deviation alarm Temperature alarm High sup-pressure ▼

Deviation の数値(任意)を① (小ボタンで決定します.

Deviation alarm ⁴⁴² Deviation = 50%

③ Time の数値(任意)を分 (小) ボタンで決定します.

Deviation alarm 442 Deviation = 50% Time = 10 s

④ Ent ボタン 🖙 を押して下記が表示されたら完了です.

Deviation alarm ⁴⁴² Complete

結果の確認;

MENU > Information > Alarm status (1-2-)

① Deviation alarm を選択し、 (ニシボタンを押します.

Alarm status 12-Position alarm ■Deviation alarm Temperature alarm S-pressure alarm ▼ ② 下記画面より Alarm Dev と Time の表示を確認します.

Deviation alarm	122
Deviation 0.	0%
Alarm Dev =50%	OK
Time=10s	OK

6.2.3. 温度アラーム

設定;

```
MENU > Diag. & Alarms > Alarm setup (4-4-)
```

① Temperature alarm を ① ① ボタンで選択し, 🖒 ボタンを押します.

Alarm setup 44-Position alarm Deviation alarm ☞Temperature alarm High sup-pressure ▼

② Low の数値(任意)を分(小)ボタンで決定します.

443

443

```
Temperature alarm
Low =−30℃
```

③ High の数値(任意)を① ① ボタンで決定します.

```
Temperature alarm
Low =-30℃
High=+70℃
```

④ Ent ボタン 🖙 を押して下記が表示されたら完了です.

Temperature alarm 443

結果の確認;

MENU > Information > Alarm status (1-2-)

① Temperature alarm を選択し、 (ニシボタンを押します.

Alarm status 12-Position alarm Deviation alarm Temperature alarm S-pressure alarm

② 下記画面より Lo と Hi の表示を確認します.

Temperature alarm ¹²³ Temp. +25℃ Lo alarm -30℃ OK Hi alarm +70℃ OK

6.2.4. 高供給圧アラーム

設定; MENU > Diag. & Alarms > Alarm setup (4-4-)

High Sup-pressure を ① ① ボタンで選択し、 ジボタンを押します.

Alarm setup 44-Position alarm Deviation alarm Temperature alarm ☞High sup-pressure ▼

High Sup-pressure の数値(任意)を公式のボタンで決定します.

High sup-pres.AL 444

= 500kPa

③ Ent ボタン 🖙 を押して下記が表示されたら完了です.

High sup-pres.AL 444

結果の確認 ;

MENU > Information > Alarm status (1-2-)

① S-pressure alarm を選択し、 (ニシ) ボタンを押します.

Alarm status ¹²⁻ Position alarm Deviation alarm Temperature alarm ☞S-pressure alarm ▼

② 下記画面より Hi alarm の表示を確認します.

S-pressure	alarm	124
Supply	400kPa	
Lo alarm	Unused	
Hi alarm	OK	

6.2.5. 低供給圧アラーム

設定; MENU > Diag. & Alarms > Alarm setup (4-4-)

① Low Sup-pressure を① ① ボタンで選択し、 ご ボタンを押します.

Alarm setup 44-High sup-pressure ■Low sup-pressure Pressure failure All alarm clear ▼

Low Sup-pressure の数値(任意)を① ①ボタンで決定します.
 Low Sup-pres AL 445

Low sup-pres.AL = 250kPa

③ Ent ボタン 🖒 を押して下記が表示されたら完了です.

Low sup-pres.AL 445

結果の確認;

MENU > Information > Alarm status (1-2-)

① S-pressure alarm を選択し、 (ニシ ボタンを押します.

Alarm status 12-Position alarm Deviation alarm Temperature alarm ☞S-pressure alarm ▼

② 下記画面より Lo alarm の表示を確認します.

S	b-pre	essure	alarm	12
	Sup	ply	280kPa	
	Lo	alarm	OK	
	Hi	alarm	Unused	

6.2.6. 圧力センサ故障アラーム

設定;

```
MENU > Diag. & Alarms > Alarm setup (4-4-)
```

Pressure failure を () () ボタンで選択し, () ボタンを押します.

Enable を① 小ボタンで選択し、 ホタンを押します.

③ Ent ボタン 🖙 を押して下記が表示されたら完了です.

Pressure failure	440
Complete	

結果の確認;

MENU > Information > Alarm status (1-2-)

① Other failure を選択し、 (ニシ ボタンを押します.

② 下記画面より Pres. sensor の表示を確認します.

Other f	ailure	126
EEPRO	М	Good
Posi.	sensor	Good
Pres.	sensor	Good

6.2.7. アラームの解除

設定; MENU > Diag. & Alarms > Alarm setup (4-4-)

① All alarm clear を ① ① ボタンで選択し、 ボタンを押します.

② 下記のようにアラーム状態が表示されます.

Alarm clear 447 clear by right key Alarm status 0004H Alarm backup 0004H P

③ 💬を押して下記が表示されたら完了です.

Alarm clear 447 Alarm clear

6.3. NAMUR 表示の割り当て

各アラームに紐付けるステータス分類は、任意に選択することが可能です.

設定;

MENU > Diag. & Alarms > NAMUR status sel. (4-5-)

開度アラームの例)

① Position alarm を選択し, ジボタンを押します.

- ② 下記画面が表示されるので、 ⊕ ⊕ ボタンで割り当てるステータスを選択し、 ⊖ ボタンを押す.
 - Position alarm ⁴⁵¹ 1.Maintenance req 2.Out of spec. • 3.Check function

③ 下記が表示されたら完了です.

7. 診断

本器には,運転中にデータを取得・積算するオンライン診断と、メンテナンス時などに実行するオフライン診断の 機能が備わっています.本器の設置環境やプロセスの運転条件に基づいた設定を行うことで,効率的な予防・ 予知保全につなげることができます.

7.1. オンライン診断

7.1.1. オンライン診断の概要

下表にオンライン診断の概要と設定値を示します.

項目	診断の概要
	設定したしきい値を超える開度変化が生じた場合, その移動距離を積算して表示します.
	パッキンの摩耗・損傷,駆動部のスプリング破損など,経年劣化の予測に利用することができます.
トータル	表示値;フルストローク(100%)の1往復分を1としてカウントします.例)100%全閉全開を5回往
ストローク	復行うと 5 カウント
[Total stroke]	最大約 42 億カウント(例えば 10 秒に 1 回,1 往復しておよそ 2600 年分)まで表示し,こ
	れを超えるとゼロにリセットされます.
	設定値 ;
	Criteria [%]:積算するための開度変化のしきい値を設定します
	設定したしきい値を超える開度反転変化が生じた場合,その反転回数を積算して表示します.
方向反転	パッキンの摩耗・損傷,駆動部のスプリング破損など,経年劣化の予測に利用することができます.
回数	
[Total dir. change]	設定値;
	Criteria [%]:開度反転を判断する変化幅を設定します
	設定したしきい値以内の開度が継続した時間を積算して表示します.
低開度	低開度での制御に起因するバルブ本体の損傷などの予測に利用することができます.
制御時間	
[Low position time]	設定値;
	Criteria [%]:低開度と判断する開度を設定します
	設定したしきい値以上の温度が継続した時間を積算して表示します.
周囲高温	高温環境に起因する部品の劣化・損傷の予測に利用することができます.
時間	
[Max. temp. time]	設定値;
	Criteria [℃/°F]:高温と判断する温度を設定します
周囲低温	設定したしきい値以下の温度が継続した時間を積算して表示します.
時間	低温環境に起因する部品の劣化・損傷の予測に利用することができます.

表 7.1 オンライン診断

7.1.2. オンライン診断の設定 / 結果の確認とクリア

7.1.2.1. トータルストローク

設定;

MENU > Diag & Alarms > Online diag. setup (4-1-)

① 設定値を入力する. 数値は ① ① ボタンで変更します.

411

```
Total stroke 411
Criteria=10%
```

Continue を選択し、 (ニシ ボタンを押します.)

Total stroke	
Criteria=10%	
Log Erase	
<pre>Continue</pre>	

③ 下記が表示されたら完了です.

То	tal stroke	411
Со	mplete	

結果の確認;

MENU > Information > Diag. result (1-5-)

① Total stroke を選択し、 に ボタンを押します.

Diagnost. Result	15-
🖝 Total stroke	
Total Dir. change	
Low position time	
Max. temp. time	▼

② 下記画面となり,現在の値(XX)と設定したしきい値が表示されます.

Total stroke	151
->XX	
criteria	5%

③ (マ) ボタンにより, ①の画面に戻ります.

結果のクリア; MENU > Diag & Alarms > Online diag. setup > Total stroke (4-1-1)

```
    ① 示タンを押し、②へ進みます.
    Total stroke
Criteria=10%
```

② Log Erase を選択し、 Cシボタンを押します.

③ 下記が表示されたら完了です.

Total stroke ⁴¹¹ Complete

7.1.2.2. 方向反転回数

```
設定;
MENU > Diag & Alarms > Online diag. setup (4-1-)
```

① 設定値を入力する.数値は(分)(小ボタンで変更します.

```
Total dir. change <sup>412</sup>
Criteria= 5%
```

② Continue を選択し、 🗇 ボタンを押します.

③ 下記が表示されたら完了です.

Total	dir.	change	412
Comple	ete		

結果の確認;

MENU > Information > Diag. result (1-5-)

① Total dir.を選択し、 🗇 ボタンを押します.

② 下記画面となり、現在の値(XX)と設定したしきい値が表示されます.

Total	dir.	change	152
->>	XX		
cri	iteria	a	5%

③ (字) ボタンにより, ①の画面に戻ります.

結果のクリア; MENU > Diag & Alarms > Online diag. setup > Total dir. change (4-1-2)

```
    ① ボタンを押し, ②へ進みます.
    Total dir. change
Criteria= 5%
```

② Log Erase を選択し、 ニシボタンを押します.

```
Total dir. change
Criteria= 5%
☞Log Erase
Continue
```

③ 下記が表示されたら完了です.

Total dir. change 412

7.1.2.3. 低開度制御時間

```
設定;
```

```
MENU > Diag & Alarms > Online diag. setup (4-1-)
```

① 設定値を入力する.数値は〇〇〇ボタンで変更します.

② Continue を選択し、 🖘 ボタンを押します.

③ 下記が表示されたら完了です.

Low	position	time	413
Com	plete		

結果の確認;

MENU > Information > Diag. result (1-5-)

① Low position time を選択し、 (ニシ ボタンを押します.

② 下記画面となり、現在の値(xx)と設定したしきい値が表示されます.

③ 🗇 ボタンにより, ①の画面に戻ります.

結果のクリア;

MENU > Diag & Alarms > Online diag. setup > Low position time (4-1-3)

413

- ① ⇒ ボタンを押し、②へ進みます.
 Low position time Criteria=5.0%
- ② Log Erase を選択し、 ニシボタンを押します.

Low position time Criteria=5.0% Continue

③ 下記が表示されたら完了です.

Low position time

7.1.2.4. 周囲高温時間

```
設定;
MENU > Diag & Alarms > Online diag. setup (4-1-)
```

① 設定値を入力する.数値は〇〇〇ボタンで変更します.

Max.	temp.	time	414
С	riteria	a=+50℃	

② Continue を選択し、 🗇 ボタンを押します.

③ 下記が表示されたら完了です.

Max.	temp.	time	414
Comp	lete		

結果の確認;

MENU > Information > Diag. result (1-5-)

Max. Temp. time を選択し、 ボタンを押します.

Diagnost. Result	15-
Total stroke	
Total dir. change	
Low position time	
☞Max. temp. time	▼

② 下記画面となり,現在の値(XX)と設定したしきい値が表示されます.

Max.temp.time → XXh	154
criteria	+50°C
Max.	+25℃

③ (マ) ボタンにより, ①の画面に戻ります.

結果のクリア; MENU > Diag & Alarms > Online diag. setup > Max. Temp. time (4-1-4)

Log Erase を選択し、 ボタンを押す.

Max. temp. time Criteria=+50℃ ●Log Erase Continue

③ 下記が表示されたら完了です.

Max. temp. time ⁴¹⁴ Complete

7.1.2.5. 周囲低温時間

```
設定;
```

```
MENU > Diag & Alarms > Online diag. setup (4-1-)
```

① 設定値を入力する.数値は(☆)(む)ボタンで変更し、 ⇔ ボタンを押します.

② Continue を選択し、 🖘 ボタンを押します.

③ 下記が表示されたら完了です.

Min.	temp.	time	415
Comp	lete		

結果の確認;

MENU > Information > Diag. result (1-5-)

Min. Temp. time を選択し、 ボタンを押します.

Diagnost. Result	15-
Total dir. change)
Low position time	è
Max. temp. time	
☞Min. temp. time	▼

② 下記画面となり、現在の値(XX)と設定したしきい値が表示されます.

Min.temp.time	155
→ XXh	
criteria	+0°C
Min.	+16℃

③ (字) ボタンにより, ①の画面に戻ります.
結果のクリア; MENU > Diag & Alarms > Online diag. setup > Min. Temp. time (4-1-5)

```
① ⇔ ボタンを押し, ②へ進みます.
Min. temp. time
Criteria=+0℃
```

Log Erase を選択し、 ボタンを押します.

Mln. temp. time Criteria=+0℃ ●Log Erase Continue

③ 下記が表示されたら完了です.

Min. temp. time 415 Complete

7.1.2.6. パーシャルストロークテスト

設定 ;

```
MENU > Diag & Alarms > Online diag. setup (4-1-)
```

- ① Enable/Disable を選択し、 🖙 ボタンを押します.
 - Partial stroke T. ⁴¹⁶ œEnable/Disable Stroke size Completion stroke Start stroke ▼
- Enable を選択し、 (ニシボタンを押します.)

③ 下記が表示されます.

PST online enable ⁴¹⁶ Complete

④ 次に Stroke size を選択し、 ニシ ボタンを押します.

⑤ PST Stroke size の数値(任意)を① ① ボタンで決定します.

⑥ Ent ボタン 🖘 を押すと下記が表示されます.

 ⑦ 同様にその他の項目を設定します.設定値につきましては,表 7.1 オンライン診断/パーシャルストロ ークテスト/設定値を参照ください. 結果の確認;

MENU > Information > Diag. result (1-5-)

① Partial stroke T.を選択し、 🖙 ボタンを押す.

Diag. result ¹⁵⁻ Pneumatic span Pneumatic drift S-valve signature ☞Partial stroke T. ▼

② 下記画面となり、Enable と設定日までの残りの日数が表示されます.

③ (字) ボタンにより, ①の画面に戻ります.

7.1.3. 診断ログのクリア

診断ログのクリア;

MENU > Diag & Alarms > Online diag. setup > Diag. log clear (4-1-7)

Yes を選択し, ジボタンを押す.

Diag.	log	clear	417
r¥es No			

② 下記が表示されたら完了です.

7.2. オフライン診断

7.2.1. オフライン診断の概要

下表にオフライン診断の概要と設定値を示します.

表.7.2. オフライン診断

7.2.2. 25%ステップ応答

設定;

MENU > Diag & Alarms > Offline diag. set. > 25% step response (4-2-1)

ジボタンを押す. ① 25% step response を選択し, Offline diag.set. 42-☞25% step response Pneumatic span Pneumatic drift S-valve signature v ② 設定値を入力する.数値は 🕀ボタンで変更します. 421 25%step response Step time= 60sec ③ 下記が表示されたら完了です. 421 25%step response Complete

実行;

MENU > Diag & Alarms > Offline diag. test > 25% step response (4-3-1)

💬ボタンを押す. ① 25% step response を選択し, Offline diag.test 43-☞25% step response Pneumatic span Pneumatic drift S-Valve signature v Run を選択し、 ジボタンを押す. 431 25% step response 🖝 Run Exit ③ 下記画面となり、テストがスタートします. 431 25% step response 0 -0.0% OVS 0.2%

0%→25%→50%→75%→100%→75%→50%→25%→0%の順に表示が変わります.

④ テスト終了後,下記のように今回実施した結果の画面に切り替わります.

< Now >	0.S.	Dev. 461	
0	-	0.0%	
0-25	1.0%	0.1%	
25-50	1.2%	0.3%	
50-75	0.8%	0.4%	
75-100	0.2%	0.0%	
100-75	0.2%	0.2%	
75-50	0.5%	0.1%	のら・オーバーシュー

- <u>0.1%</u> O.S.:オーバーシュート, Dev.:偏差
- ⑤ ①ボタンを押すことで 50-25, 25-0 ステップがスクロール表示されます.
- ⑥ ♡ボタンを押すことで、前回<Prev.>、初期<Init.>の結果画面に切り替わります.

<init.></init.>	0.S.	Dev. 461
0	-	0.0%
0-25	1.0%	0.1%
25-50	1.2%	0.3%
50-75	0.8%	0.4%
75-100	0.2%	0.0%
100-75	0.2%	0.2%
75-50	0.5%	0.1%

7.2.3. 空気回路スパン

```
設定;
MENU > Diag & Alarms > Offline diag. set. > Pneumatic span (4-2-2)
```

① Pneumatic span を選択し, ボタンを押す. Offline diag.set. 42-25% step response Pneumatic span Pneumatic drift S-valve signature v ⇔ボタンを押す. 数値は ⊕ ⊕ ボタンで変更します. ② 設定値(Step time)を入力し, 422 Pneumatic span Step time= 20sec (シボタンを押す、数値は())がタンで変更します。 ③ 設定値(Criteria)を入力し, 422 Pneumatic span Step time= 20sec Criteria = 95.0%

④ 下記が表示されたら完了です.

Pneumatic	span	422
Complete		

実行;

MENU > Diag & Alarms > Offline diag. test > Pneumatic span (4-3-2)

① Pneumatic span を選択し, ジボタンを押す.

Run を選択し、 ジボタンを押す.

Pneu.	Span(kPa)	432
r Run		
Exit	t	

③ 下記画面となり、テストがスタートします.

Pneu. Span(kPa)			432
IP = 0%		Sup	400
Pol	0	Po2	398

以下の順に IP が変化します.

```
IP=0\% \rightarrow IPmin(AIn) \rightarrow IPmax(AIn) \rightarrow IP=100\% \rightarrow IPmax(AOut) \rightarrow IPmin(AOut) \rightarrow IP=0\%
```

④ テスト終了後,下記のように今回実施した結果の画面に切り替わります.

Pneu.	Spai	n <n< th=""><th>0 W ></th><th>463</th></n<>	0 W >	463
Air-In				
IPmin	Ρ1	ΟK	0 k	Ра
	Ρ2	ΟK	398k	Ра
IPmax	Ρ1	ΟK	400k	Ра
	Ρ2	ΟK	0 k	Ра
Air-Ou	t			
IPmin	Ρ1	ΟK	0 k	Ра

- ⑤ ①ボタンを押すことで結果がスクロール表示されます.
- ⑥ ジボタンを押すことで, 前回<Prev.>, 初期<Init.>の結果画面に切り替わります.

7.2.4. 空気回路ドリフト

設定;

MENU > Diag & Alarms > Offline diag. set. > Pneumatic drift (4-2-3)

```
① Pneumatic drift を選択し, ジボタンを押す.
    Offline diag.set. 42-
     25% step response
     Pneumatic span
    Pneumatic drift
     S-valve signature v
② 設定値(Ramp time)を入力し、 ジボタンを押す. 数値は ⑦ ⑦ ボタンで変更します.
                     423
    Pneumatic drift
      Ramp time= 30sec
③ 設定値(Tolerance)を入力し、 ジボタンを押す. 数値は ひひボタンで変更します.
                     423
    Pneumatic drift
      Ramp time= 30sec
      Tolerance= 5.0%
④ 下記が表示されたら完了です.
                     423
    Pneumatic drift
    Complete
```

実行; MENU > Diag & Alarms > Offline diag. test > Pneumatic drift (4-3-3)

 Pneumatic drift を選択し、^〇ボタンを押す.
Offline diag.test 43- 25% step response Pneumatic span ☞Pneumatic drift S-valve signature ▼
 Run を選択し, ^(ご)ボタンを押す.
Pneumatic drift 433
r ⊷ Run Exit

③ 下記画面となり、テストがスタートします.

Pneumatic	drift 4
1 - Sta	andstill
= 20%	-> 20.0%

④ テスト終了後,下記のように今回実施した結果の画面に切り替わります.

Pneu.	drift	<now></now>	465
Air-In			
2 5	O K	0.5%	
50	O K	0.4%	
75	O K	0.5%	
Air-Ou	t		
2.5	O K	0.5%	
50	O K	0.5%	

- ⑤ 🖤ボタンを押すことで結果がスクロール表示されます.
- ⑥ ♡ボタンを押すことで、前回<Prev.>、初期<Init.>の結果画面に切り替わります.

7.2.5. 簡易バルブシグネチャ

設定; MENU > Diag & Alarms > Offline diag. set. > S-valve signature (4-2-4)

- ① S-valve signature を選択し, 🕑ボタンを押す. Offline diag.set. 42-25% step response Pneumatic span Pneumatic drift **☞**S-valve signature ② Ramp time を選択し, 🕑ボタンを押す. 424 S-valve signature ➡Ramp time Hysteresis limit Gradient limit H Gradient limit L ③ 設定値を入力し, ジボタンを押す. 数値は ジジボタンで変更します. S-valve sig. Set1 424 Ramp time= 50sec
- ④ 下記が表示されたら完了です.

```
S-valve sig. Set1 <sup>424</sup>
Complete
```

⑤ Hysteresis limit, Gradient limit H, Gradient limit L についても同様に設定します.

実行; MENU > Diag & Alarms > Offline diag. test > S-valve signature (4-3-4)

① S-valve signature を選択し, ^(」)ボタンを押す.

Offline diag.test	43-
25% step response	
Pneumatic span	
Pneumatic drift	
☞S-valve signature	▼

Run を選択し, ジボタンを押す.

S-valve	signature	434
Pun		
- Kuli		
Exit		

③ 下記画面となり、テストがスタートします.

S-valve s	ignature	434
1-Stand	lstill ().0%
Pout1:	01	kPa
Pout2:	01	kPa

④ テスト終了後,下記のように今回実施した結果の画面に切り替わります.

Val	ve	e	S	i	g	•	<		Ν	0	W		>			467
Pre	S	s u	r	е	-	Η	У	s	t	е	r	е	s	i	s	
2	5					0	Ŕ					1	0	k	Ρ	а
5	0					0	K					1	1	k	Ρ	а
7	5					0	K					1	0	k	Ρ	а
Pre	s	s u	r	е	_	A	v	е	r	a	g	е				
2	5										1	1	0	k	Ρ	а
5	0										1	4	0	k	Ρ	а

⑤ ①ボタンを押すことで結果がスクロール表示されます.

Val	V	е	S	i	g	•	<		Ν	0	W		>			467
Pre	s	sι	ır	е	-	A	v	е	r	а	g	е				
2	5					0	Κ				1	1	0	k	Ρ	а
5	0					0	Κ				1	4	0	k	Ρ	а
7	5					0	Κ				1	7	0	k	Ρ	а
Pre	s	sι	ır	е	-	G	r	а	d	i	е	n	t			
2	5	- 5	50			0	Κ					3	5	k	Ρ	а
5	0	- 7	75			0	Κ					3	5	k	Ρ	а

⑥ ♡ボタンを押すことで、前回<Prev.>、初期<Init.>の結果画面に切り替わります.

7.2.6. オフライン診断結果の確認および保存

診断結果の確認および保存について説明します.

各診断とも同じ操作となります. ここでは 25%ステップ応答を例に説明します.

結果の確認;

MENU > Diag & Alarms > Diag.test data > Step res. result (4-6-1)

結果の一覧が表示されます.

< Now >	0.S.	Dev. 461
0	-	0.0%
0-25	1.0%	0.1%
25-50	1.2%	0.3%
50-75	0.8%	0.4%
75-100	0.2%	0.0%
100-75	0.2%	0.2%
75-50	0.5%	0.1%

下記メニューから結果の表示のみ行うこともできます. MENU > Information > Diag. result > (1-5-)

結果の保存; MENU > Diag & Alarms > Diag.test data > Step res. save (4-6-2)

25% step save を選択し, ジボタンを押す.

下記の画面が表示されます

② 必要に応じて下記のコマンドを選択し, ジボタンを押す.

No save : 保存しません Clear now of data : <Now>のデータをクリアします To save Prev. data : <Now>のデータを<Prev.>に保存します To save Init. Data : <Now>のデータを<Init.>に保存します

8. HART 通信

※Model KGP5003 のみ

8.1. HART 通信のための準備

2.6 節の説明に従い, HART コミュニケータなどの通信ツールを, 本器の IN+と IN-に, もしくは上位制御システム の+-端子に接続してください.

8.2. HART 通信による操作

本器は、HART コミュニケータなどの通信ツールにより、設定・調整などの作業を行うことができます.

8.3. デバイスの確認

以下のコマンドにより、HART 通信ツールから本器の確認を行うことができます.

Find Device;

HART 通信ツールからの Find Device コマンドに対して、本器からの応答の有無を設定します.

MENU > Maintenance > HART relation > Find device (3-5-1)

Not armed : 応答しません Armed : 応答します

Squawk;

HART 通信ツールからの Squawk コマンドを受信したとき,本器の LCD 画面上に"Squawk ON !!"もしくは" Squawk ONCE ON "を表示(点滅)します.

MENU > Maintenance > HART relation > Squawk (3-5-2)

9. トラブルシューティング

運転開始時または運転中に問題が発生した場合は、下表を参照して処置を行ってください.

表 9.1 トラブルシューティング

現象	想定される原因	処置
		✓ 印加電流の確認
	電気の喪失・断縁・誤配線	✓ 配線接続の確認
		✓ 設定圧力の確認
	供給空気圧の低ト・喪失	✓ 減圧弁の点検・修理
	空気配管からの漏れ	✓ 配管の点検・交換
	駆動部の異常 / 手動操作機構が手動操作位置にある	✓ 自動操作位置にする
<i>●</i>		✓ 弁本体部パッキンの交換
重加TFU ない	駆動部の異常 / バッキンの固着・劣化 	✓ 駆動部の点検・修理
動作が遅い	駆動部の出力不足	✓ 駆動部の交換
	本器のアラームにより強制遮断している	✓ アラームの確認
フルストロークしない		✓ 設定項目の確認
	本器設定の誤り	✓ PID パラメータの確認
		✓ A/M ユニットが Auto かを確認する
		✓ 固定絞りの清掃
	本器の調整ずれ	✓ ノズルフラッパの清掃
		✓ トルクモータの調整
	本器の故障	弊社営業所までご連絡ください
		✓ 固定絞りの清掃
	本器の異常	✓ ノズルフラッパの清掃
		✓ PID パラメータの確認
ハンチンクする		✓ 再チューニング
オーバーシュートする	PID パラメータのミスマッチ	✓ Response tuningの適用
		✓ ランクの変更
	高フリクションによろリミットサイクルの発生	✓ Dead band の適用
		✓ Custom 設定により」の値を大きくする
		✓ 取り付けガタの確認
	取り付けの異常	✓ フィードバックレバー水平の確認
		✓ クロスポイントの再設定
精度が悪い	制御異常	✓ PID パラメータの確認
		✓ デッドバンド設定の確認
	駆動部の異常 / パッキンの固着・劣化	✓ 弁本体部パッキンの交換
		✓ 駆動部の点検・修理
	電気の喪失・断線・誤配線	✓ 印加電流の確認
LCD 表示されない		✓ 配線接続の確認
	│ 低温 · 高温環境 ────────────────────────────────	✓ LCD 仕様温度範囲での表示確認
	本器の故障	弊社営業所までご連絡ください
開度発信信号が出	電気の喪失・断線・誤配線	✓ 印加電圧の確認
カされない, すれる		✓
※ Model KGP5003 のみ	出力電流認識値のずれ	✓ 開度発信電流キャリブレーションの実施
調節分の		✓ 駆動部出力を上げる
詞即井の		(駆動部をサイズアップする)
テルビル・ワル開化	 弁座の腐食・侵食・キズ	✓ 弁の分解整備

10.部品

10.1. 部品図とリスト

図 10.1 KGP5000 分解図と部品番号

部品番号	部品またはユニット名	数量	備考
1	フロントカバーユニット	1	
2	パイロットリレーユニット	1	
3	ばね座金組込十字穴付なべ小ねじ	4	M4-L12
4	οリング(2 種類,パイロットリレーユニット用)	4,2	
5	A/M ユニット	1	
6	ばね座金組込十字穴付なべ小ねじ	2	M4-L12
7	O リング(2 種類, A/M ユニット用)	2,1	
8	フィルタ(A/M ユニット用)	1	
9	トルクモータユニット	1	
10	ばね座金組込十字穴付なべ小ねじ	2	M4-L12
11	o リング(トルクモータユニット用)	1	
12	ばね座金平座金組込六角穴付きボルト	5	※防爆特殊ねじ, M6-L15
13	基板ユニット	1	
14	圧力センサユニット	1	
15	ばね座金平座金組込十字穴付なべ小ねじ	5	M3-L20
16	O リング(圧力センサユニット用)	4	
17	ポテンショメータユニット	1	
18	ストッパープレート	1	
19	ばね座金組込六角穴付きボルト	2	※防爆特殊ねじ, M5-L12
20	エアパスパッキン	1	
21	ο リング(ベースユニット用)	1	
22	ターミナルカバー	1	
23	o リング(ターミナルカバー用)	1	
24	ばね座金組込六角穴付きボルト	2	※防爆特殊ねじ, M3-L8
25	六角穴付き止めねじ	1	※防爆特殊ねじ, M4-L6

表 10.1 部品・ユニット一覧

※防爆特殊ねじに関連する部品の分解・交換・組立作業には、専門的な技術が必要となりますので、弊社 営業所までお問い合わせください.

10.2. 点検周期·交換周期

以下の部品は有寿命部品となります. 推奨点検周期および交換周期を下表に示します. 設置される環境や運転条件に応じて定期的なメンテナンス・交換作業を実施してください.

部位/チェック箇所	チェックポイント	推奨点検周期	推奨交換周期
		(年)	(年)
フィルタ(A/M ユニット部)	ゴミの堆積	1	5
ノズルフラッパ	ゴミの堆積	1	-
固定絞り	詰まり	1	-
パイロットリレーユニット	空気漏れ	1	5
圧力計	空気漏れ, 破損	1	-
フィードバックピン	摩耗	1	-
フィードバックレバー	摩耗	1	-
ポテンショメータユニット 注 1	摩耗	10	10
トルクモータユニット 注1	過剰な力が	加わった場合	

注1:専門知識を必要としますので,安全にお使いいただくために,点検及び交換作業は弊社にご依頼ください.

10.3. 製品または部品の廃棄

不要となった製品または部品については、「廃棄物の処理及び清掃に関する法律」に従って、都道府県が許可した産業廃棄物処理業者、もしくは地方公共団体がその処理を行っている場合にはその団体に処理を委託してください.

10.4. 保守部品の手配・お問い合わせ

保守用消耗部品,有寿命部品および摩耗・損傷による交換部品の手配・詳細についてのお問い合わせは弊 社営業所までお願い致します.

11.外形寸法図

図 11a リニア用標準レバー形

図 11b リニア用ロングレバー

図 11c ロータリー用レバー形

図 11d ロータリー用 軸直結形 (VDI/VDE3845)

A) 付録. 形式およびコード番号

<u>ベースモデル</u>		<u>Base model</u>	K	G	Р	5 [1	2	3	-	4	5	6	\bigcirc	-	8
① 構造		Proof type	Standard conr	nections	(options)											
防塵・防水		Dust • water proof	Air: Rc1/4 (1/4	NPT) *	注1		٥									
(非防爆)		Buot water proor	Electric: G1/2	(1/2NP1	Г, М20)		Ŭ									
TIIS * 注2	利用	Flameproof	Air: Rc1/4				1									
1110 (LL	1017	Thimoproof	Electric: G1/2				-									
CCC	利用	Flameproof	Air: 1/4NPT				2									
(NEPSI)	111111111	rameproor	Electric: 1/2N	PT			2									
KOSHA	ᇒᇆ	Flameproof	Air: 1/4NPT				3									
noonn	111111111111111111111111111111111111111	Tameproor	Electric 1/2NF	Electric 1/2NPT												
IECEx	ᇒᇆ	Flameproof	Air 1/4NPT													
CNS*注4		Frameproor	Electric 1/2NF	T (M20))		4									
ATEX	ᇒᇆ	Flameproof	Air 1/4NPT				5									
11112/1	111111111111111111111111111111111111111	Tameproor	Electric 1/2NF	T (M20))		Ů									
	利用	Flameproof (TR CU 012)	Air 1/4NPT				6									
EAC					\ \		•									
		EMC (TR CU 020)	Electric 1/2NF	T (M20,)		F									
② フィードバック	レバー	Feedback type														
リニア用標準レ	バー形	Linear motion standard t	ype (~50mm	stroke)				0								
リニア用ロングレ	レバー形	Linear motion- long strok	e type (option	ns)				1								
ロータリー用レル	バー形	Rotary motion type						2								
ロータリー用・車	曲直結形	Rotary motion- VDI/VD	E3845 type					3								
③ 通信方式	③ 通信方式 Communication type															
4~20mA HARTなし	4~20mA HARTなし,開度発信なし 4~20mA & Without HART & Without Position feedback 0															
4~20mA HART付	4~20mA HART付, 開度発信付 4~20mA & With HART & With Position feedback 3															
④ 適用駆動部	④ 適用駆動部 Actuator type															
単動駆動部	単動駆動部 Single acting actuator							S								
複動駆動部		Double acting actuator									D					

<u>ベースモデル</u>	<u>Base model</u>	Κ	G	Р	5	1	2	3	-	4	5	6	\bigcirc	-	8
⑤ 圧力計ブロック	Pressure gauge block ty	pe													
なし	Without gauge block										0				
あり	With gauge block										5	1			
⑥ 圧力計レンジ	Pressure gauge range														
200kPa / (0.2MPa) /	(30psi/2bar) / (200kPa/2kg	f∕cm2)	/ (2b	ar/0.2N	/IPa)							2			
400kPa / (0.4MPa) /	(60psi/4bar) / (400kPa/4kg	f∕cm2)	/ (4b	ar/0.41	/IPa)							4	1		
1000kPa / (1.0MPa)	/ (150psi/10bar) / (1000kPa	/ 10kgf/	cm2)	/ (10)	oar/1.0	MPa)						10			
⑦ 圧力計単位	Pressure gauge unit														
	kPa												K		
	MPa												м		
	psi *注3												Р		
	bar *注3												R		
	kPa & kgf∕cm²												G		
	bar & Mpa												В		
⑧ 付加仕様	Option														
付加仕様なし	No option														0
		~ 100	0mm st	roke											1
	Linear metion langeturle	$\sim \! 150 \mathrm{mm}$ stroke											2		
リーア用ロンクレハー	Linear motion ² long stroke	\sim 200mm stroke												3	
		$\sim 250 { m mm}$ stroke													4
11 X*X - # ² /-+	II	NPT	connect	ions (I	Electric	e 1/2NI	PT, Air	• 1/4NF	PT)						N
ハリシンク接続	Housing connections	M20	connect	ions (I	Electric	e M20x	1.5, Ai	ir 1/4N	PT)						М
TSラベル(TD0401AE) *注4	TS Label(No.TD0401AE App	plicant : A	Asiam l	Interna	tional))									Α
TSラベル(TD04010D) *注4	TD04010D) *注4 TS Label(No.TD04010D Applicant : Fortune Service Corporation)										F				
TIIS用追加ケーブルグランド	Additional cable gland for TII	s													W
重防食塗装	Heavy duty coating														L
適合証明書·成績書付	Certificate of conformance & I	Inspectio	n certif	icate											С
特殊	Special														х

__________注1 付加仕様で"N"もしくは"M"を選択したときは, 空気接続と電気接続がともに各付加仕様に記載の仕様となります.

注2 2つめの引込口もあわせて使用する場合(図2.6e参照)は、付加仕様"W"を選択してください.

注3 圧力計目盛板はpsi,bar両単位併記となります.

注4 CNS耐圧防爆認証品ではTSラベルが必須となります。希望される場合は付加仕様"A"又は"F"を選択してください。

※ご注文の際は、最新の仕様書(STANDARD SPECIFICATION)をご確認ください.

B) 付録. テクニカルサポート記入票

KGP5000 Technical Support Checklist

弊社営業所までサポートのご連絡をいただく前に,以下の情報をご用意ください.

1. KGP5000のプレートに記載のシリアル番号	1. KGP5000のプレートに記載のシリアル番号									
2. 納品仕様書に記載の工事番号										
3. KGP5000のソフトウェアのバージョン										
4. 現時点における以下のパラメータをお知らせください.										
入力信号(Input signal)	mA									
供給空気圧力(Pressure-sup.)	kPa									
出力空気圧 1 (Pressure-OUT1)	kPa									
出力空気圧 2 (Pressure-OUT2)	kPa									
開度指示値(Set point)	% 開度(Position)%									
5. アラームが発報している場合その種類をお知らせください 6. ポジショナ - 駆動部 バルブの動作状態をお知らせください	い									
 7. フルオートチューン結果の値(Tuning result) 										
ランク:XS~XL Stroke sp.(上)	_)ms (下)ms									
Bias Value% IP signal	%									
8. レスポンスチューニングの値(Response tuning) Normal/Aggressive(+1~+9)/Stable(-1~-9)										

■国内営業所

営業所		連絡先							
本社	〒103-0027	東京都中央区日本橋 1-16-7(工装日本橋ビル)	TEL. 03(5202) 4300(代表) FAX. 03(5202) 4301						
西日本営業部	〒564-0062	大阪府吹田市垂水町 3-31-29	TEL. 06(6378) 7117(代表) FAX. 06(6378) 7050						
CSC 北海道	〒053-0047	北海道苫小牧市泉町 1-1-6	TEL. 0144(31) 4400(代表) FAX. 0144(31) 4401						
CSC 仙台	〒989-2322	宮城県亘理郡亘理町逢隈蕨字卯 49-1	TEL. 0223(33) 1891(代表) FAX. 0223(33) 1892						
CSC 福島	〒962-0312	福島県須賀川市大久保川虫内 129	TEL. 0248(65) 3128(代表) FAX. 0248(65) 3224						
CSC 新潟	〒950-0813	新潟県新潟市東区大杉本町 5-12-36	TEL. 025(275) 8461(代表) FAX. 025(275) 8462						
CSC 鹿島	〒314-0112	茨城県神栖市知手中央 6-4-18	TEL. 0299(96) 6891(代表) FAX. 0299(96) 6892						
CSC 関東	〒290-0057	千葉県市原市五井金杉 1-42	TEL. 0436(22) 0604(代表) FAX. 0436(21) 1311						
csc 富士	₹421-3306	静岡県富士市中之郷 1450	TEL. 0545(81) 2380(代表) FAX. 0545(81) 2381						
CSC 名古屋	〒486-0935	愛知県春日井市森山田町 62	TEL. 0568(34) 1421(代表) FAX. 0568(34) 1431						
csc 大阪	〒564-0062	大阪府吹田市垂水町 3-31-29	TEL. 06(6378) 7117(代表) FAX. 06(6378) 7050						
CSC 広島	〒731-5127	広島県広島市佐伯区五日市 1-8-25	TEL. 082(943) 7750(代表) FAX. 082(922) 9033						
csc 岡山	〒712-8061	岡山県倉敷市神田 3-8-29	TEL. 086(444) 1802(代表) FAX. 086(444) 1812						
csc 九州	〒802-0802	福岡県北九州市小倉南区城野 4-5-55	TEL. 093(922) 3431(代表) FAX. 093(951) 1435						
csc 大分	〒870-0901	大分県大分市西新地 1-8-17	TEL. 097(551) 4816(代表) FAX. 097(551) 4827						